Skip to main content
Log in

The non-null limiting distribution of the generalized Baumgartner statistic based on the Fourier series approximation

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

The non-null limiting distribution of the generalized Baumgartner statistic is approximated by applying the Fourier series approximation. Due to the development of computational power, the Fourier series approximation is readily utilized to approximate its probability density function. The infinite product part for a non-central parameter in the characteristic function is re-formulated by using a formula of the trigonometric function. The non-central parameter of the generalized Baumgartner statistic is formulated by the first moment of the generalized Baumgartner statistic under the alternative hypothesis. The non-central parameter is used to calculate the power of the generalized Baumgartner statistic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson TW, Darling DA (1952) Asymptotic theory of certain “goodness of fit” criteria based on stochastic processes. Ann Math Stat 23:193–212

    Article  MathSciNet  Google Scholar 

  • Baumgartner W, Weiß P, Schindler H (1998) A nonparametric test for the general two-sample problem. Biometrics 54:1129–1135

    Article  Google Scholar 

  • Bodenham DA, Adams NM (2016) A comparison of efficient approximations for a weighted sum of chi-squared random variables. Stat Comput 26:917–928

    Article  MathSciNet  Google Scholar 

  • Castaño-Martínez A, López-Blázquez F (2005) Distribution of a sum of weighted noncentral chi-square variables. TEST 14:397–415

    Article  MathSciNet  Google Scholar 

  • Ding CG (1992) Algorithm AS 275: computing the non-central \(\chi ^2\) distribution function. J R Stat Soc Ser C 41:478–482

    Google Scholar 

  • Duchesne P, Lafaye De Micheaux P (2010) Computing the distribution of quadratic forms: further comparisons between the Liu-Tang-Zhang approximation and exact methods. Comput Stat Data Anal 54:858–862

    Article  MathSciNet  Google Scholar 

  • Farebrother RW (1987) Algorithm AS231: the distribution of a noncentral \(\chi ^2\) variable with nonnegative degrees of freedom. J R Stat Soc Ser C 17:402–405

    MATH  Google Scholar 

  • Gabler S, Wolff C (1987) A quick and easy approximation to the distribution of a sum of weighted chi-square variables. Stat Hefte 28:317–325

    Article  MathSciNet  Google Scholar 

  • Govindarajulu Z (2007) Nonparametric inference. World Scientific Publishing, New Jersey

    Book  Google Scholar 

  • Ha HT (2012) Fourier series approximation for the generalized Baumgartner statistic. Commun Korean Stat Soc 19:451–457

    Google Scholar 

  • Ha HT, Provost SB (2013) An accurate approximation to the distribution of a linear combination of non-central chi-square random variables. REVSTAT—Stat J 11:231–254

    MathSciNet  MATH  Google Scholar 

  • Hájek J, Sidák Z, Sen PK (1999) Theory of rank tests, 2nd edn. Academic Press, San Diego

    MATH  Google Scholar 

  • Hirotsu C (1986) Cumulative chi-square statistic as a tool for testing goodness of fit. Biometrika 73:165–173

    Article  MathSciNet  Google Scholar 

  • Kamps U (1990) Characterizations of the exponential distribution by weighted sums of iid random variables. Stat Pap 31:233–237

    Article  Google Scholar 

  • Mathai AM, Provost SB (1992) Quadratic forms in random variables: theory and applications, statistics: a series of textbooks and monographs (Book 126). CRC Press, Boca Raton

    Google Scholar 

  • Murakami H (2006) A \(k\)-sample rank test based on modified Baumgartner statistic and its power comparison. J Japanese Soc Comput Stat 19:1–13

    Article  MathSciNet  Google Scholar 

  • Murakami H, Kamakura T, Taniguchi M (2009) A saddlepoint approximation to the limiting distribution of a \(k\)-sample Baumgartner statistic. J Japanese Stat Soc 39:133–141

    Article  MathSciNet  Google Scholar 

  • Nair VN (1986) On testing against ordered alternatives in analysis of variance models. Biometrika 73:493–499

    Article  MathSciNet  Google Scholar 

  • Penev S, Raykov T (2000) A wiener germ approximation of the noncentral chi square distribution and of its quantiles. Comput Stat 15:219–228

    Article  Google Scholar 

  • Pettitt AN (1976) A two-sample Anderson-Darling rank statistic. Biometrika 63:161–168

    MathSciNet  MATH  Google Scholar 

  • Potuschak H, Müller WG (2009) More on the distribution of the sum of uniform random variables. Stat Pap 50:177–183

    Article  MathSciNet  Google Scholar 

  • Sadooghi-Alvandi SM, Nematollahi AR, Habibi R (2009) On the distribution of the sum of independent uniform random variables. Stat Pap 50:171–175

    Article  MathSciNet  Google Scholar 

  • Solomon H, Stephens MA (1977) Distribution of a sum of weighted chi-square variables. J Am Stat Assoc 72:881–885

    MATH  Google Scholar 

  • Tan WY, Tiku ML (1999) Sampling distributions in terms of Laguerre polynomials with applications. New Age International Publishers, New Delhi

    Google Scholar 

  • Tanaka K (1996) Time series analysis: nonstationary and noninvertible distribution theory. Wiley, New York

    MATH  Google Scholar 

  • Tank F, Eryilmaz S (2015) The distributions of sum, minima and maxima of generalized geometric random variables. Stat Pap 56:1191–1203

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidetoshi Murakami.

Appendix

Appendix

We derive that the characteristic function converges to Eq. (1). First, we introduce a famous formula for the partial fraction expansion of trigonometric function as follows:

$$\begin{aligned} \sum _{k=1}^{\infty } \frac{1}{x^2-(2k-1)^2} = - \frac{\pi }{4x}\tan \frac{\pi x}{2}. \end{aligned}$$
(5)

The characteristic function is rewritten as

$$\begin{aligned}&\prod _{j=1}^{\infty } \exp \left( \frac{\frac{\delta \mathcal {I} u}{j(j+1)}}{1-\frac{2 \mathcal {I} u}{j(j+1)}}\right) \left( 1-\frac{2 \mathcal {I} u}{j(j+1)}\right) ^{-\frac{k-1}{2}} \\= & {} \exp \left( \sum _{j=1}^{\infty } \frac{\delta \mathcal {I} u}{j(j+1)-2 \mathcal {I} u}\right) \prod _{j=1}^{\infty } \left( 1-\frac{2 \mathcal {I} u}{j(j+1)}\right) ^{-\frac{k-1}{2}}. \end{aligned}$$

Herein we focus on the first term. Then we have

$$\begin{aligned} \sum _{j=1}^{\infty } \frac{\delta \mathcal {I} u}{j(j+1)-2 \mathcal {I} u}= & {} \delta \mathcal {I} u \sum _{j=2}^{\infty } \frac{1}{j(j-1)-2 \mathcal {I} u} \nonumber \\= & {} 4\delta \mathcal {I} u \sum _{j=2}^{\infty } \frac{1}{4j^2 -4j-8 \mathcal {I} u +1-1} \nonumber \\= & {} -4\delta \mathcal {I} u \sum _{j=2}^{\infty } \frac{1}{1+8 \mathcal {I} u -(2j-1)^2} \nonumber \\= & {} -4\delta \mathcal {I} u \left[ \sum _{j=2}^{\infty } \frac{1}{1+8 \mathcal {I} u -(2j-1)^2} +\frac{1}{8\mathcal {I}u} -\frac{1}{8\mathcal {I}u}\right] \nonumber \\= & {} -4\delta \mathcal {I} u \left[ \sum _{j=1}^{\infty } \frac{1}{1+8 \mathcal {I} u -(2j-1)^2} -\frac{1}{8\mathcal {I}u}\right] . \end{aligned}$$
(6)

By applying (5)–(6), we obtain

$$\begin{aligned} -4\delta \mathcal {I} u \left[ -\frac{\pi }{4\sqrt{1+8\mathcal {I}u}} \tan \left( \frac{\pi }{2}\sqrt{1+8 \mathcal {I} u}\right) -\frac{1}{8\mathcal {I}u}\right] = \frac{\delta }{2}+\frac{ \pi \delta \mathcal {I} u\tan (\frac{\pi }{2}\sqrt{1+8 \mathcal {I} u}) }{\sqrt{1+8 \mathcal {I} u}}. \end{aligned}$$

Therefore, the characteristic function consists to (1).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyazaki, R., Murakami, H. The non-null limiting distribution of the generalized Baumgartner statistic based on the Fourier series approximation. Stat Papers 61, 1893–1909 (2020). https://doi.org/10.1007/s00362-018-1012-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-018-1012-2

Keywords

Mathematics Subject Classification

Navigation