Skip to main content
Log in

FPCA-based estimation for generalized functional partially linear models

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

In real data analysis, practitioners frequently come across the case that a discrete response will be related to both a function-valued random variable and a vector-value random variable as the predictor variables. In this paper, we consider the generalized functional partially linear models (GFPLM). The infinite slope function in the GFPLM is estimated by the principal component basis function approximations. Then, we consider the theoretical properties of the estimator obtained by maximizing the quasi likelihood function. The asymptotic normality of the estimator of the finite dimensional parameter and the rate of convergence of the estimator of the infinite dimensional slope function are established, respectively. We investigate the finite sample properties of the estimation procedure via Monte Carlo simulation studies and a real data analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aneiros-Pérez G, Vieu P (2006) Semi-functional partial linear regression. Stat Probab Lett 76(11):1102–1110

    Article  MathSciNet  Google Scholar 

  • Aneiros-Pérez G, Vieu P (2015) Partial linear modelling with multi-functional covariates. Comput Stat 30(3):647–671

    Article  MathSciNet  Google Scholar 

  • Cai T, Hall P (2006) Prediction in functional linear regression. Ann Stat 34(5):2159–2179

    Article  MathSciNet  Google Scholar 

  • Cai T, Yuan M (2012) Minimax and adaptive prediction for functional linear regression. J Am Stat Assoc 107(499):1201–1216

    Article  MathSciNet  Google Scholar 

  • Cardot H, Sarda P (2005) Estimation in generalized linear model for functional data via penalized likelihood. J Multivar Anal 92(1):24–41

    Article  MathSciNet  Google Scholar 

  • Cardot H, Ferraty F, Sarda P (1999) Functional linear model. Stat Probab Lett 45(1):11–22

    Article  MathSciNet  Google Scholar 

  • Crambes C, Kneip A, Sarda P (2009) Smoothing splines estimators for functional linear regression. Ann Stat 37(1):35–72

    Article  MathSciNet  Google Scholar 

  • Febrero-Bande M, Oviedo de la Fuente M (2012) fda.usc: functional data analysis. Utilities for Statistical Computing. http://cran.r-project.org/web/packages/fda.usc/index.html. R package version 1.3.0

  • Ferraty F, Vieu P (2006) Nonparametric functional data analysis. Springer, New York

    MATH  Google Scholar 

  • Geyer CJ (1994) On the convergence of Monte Carlo maximum likelihood calculations. J R Stat Soc B 56(1):261–274

    MathSciNet  MATH  Google Scholar 

  • Hall P, Horowitz J (2007) Methodology and convergence rates for functional linear regression. Ann Stat 35:70–91

    Article  MathSciNet  Google Scholar 

  • Horváth L, Kokoszka P (2012) Inference for functional data with applications. Springer, New York

    Book  Google Scholar 

  • Kong D, Staicu A-M, Maity A (2016a) Classical testing in functional linear models. J Nonparametric Stat 28:813–838

    Article  MathSciNet  Google Scholar 

  • Kong D, Xue K, Yao F, Zhang HH (2016b) Partially functional linear regression in high dimensions. Biometrika 103:147–159

    Article  MathSciNet  Google Scholar 

  • Kong D, Ibrahim JG, Lee E, Zhu H (2018) FLCRM: functional linear cox regression model. Biometrics 74:109–117

    Article  MathSciNet  Google Scholar 

  • Li Y, Hsing T (2007) On rates of convergence in functional linear regression. J Multivariate Anal 98:1782–1804

    Article  MathSciNet  Google Scholar 

  • Ling N, Aneiros G, Vieu P (2018) kNN estimation in functional partial linear modeling. Stat Pap (in press)

  • Lu Y, Du J, Sun Z (2014) Functional partially linear quantile regression model. Metrika 77(2):317–332

    Article  MathSciNet  Google Scholar 

  • Mccullagh P, Nelder JA (1989) An outline of generalized linear models. Springer, New York

    Book  Google Scholar 

  • Müller H, Stadtmüller U (2005) Generalized functional linear models. Ann Stat 33:774–805

    Article  MathSciNet  Google Scholar 

  • Nelder JA, Wedderburn RWM (1972) Generalized linear models. J R Stat Soc B 135(3):370–384

    Google Scholar 

  • Peng Q, Zhou J, Tang N (2016) Varying coefficient partially functional linear regression models. Stat Pap 57:827–841

    Article  MathSciNet  Google Scholar 

  • Pollard D (1991) Asymptotics for least absolute deviation regression estimators. Econom Theory 7(2):186–199

    Article  MathSciNet  Google Scholar 

  • Ramsay JO, Dalzell CJ (1991) Some tools for functional data analysis. J R Stat Soc 53(3):539–572

    MathSciNet  MATH  Google Scholar 

  • Ramsay JO, Silverman BW (2005) Functional data analysis, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Riesz F, Sz.-Nagy B (1956) Vorlesungen über funktionalanalysis. Veb Deutscher Verlag Der Wissenschaften Berlin

  • Shin H (2009) Partial functional linear regression. J Stat Plan Inference 139:3405–3418

    Article  MathSciNet  Google Scholar 

  • van der Vaart AW (1998) Asymptotic Statistics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Wang L, Liu X, Liang H, Carroll RJ (2011) Estimation and variable selection for generalized additive partial linear models. Ann Stat 39(4):1827–1851

    Article  MathSciNet  Google Scholar 

  • Yao F, Müller H, Wang J (2005) Functional linear regression analysis for longitudinal data. Ann Stat 33:2873–2903

    Article  MathSciNet  Google Scholar 

  • Yu P, Zhang Z, Du J (2016) A test of linearity in partial functional linear regression. Metrika 79(8):1–17

    Article  MathSciNet  Google Scholar 

  • Yu P, Du J, Zhang Z (2017) Varying-coefficient partially functional linear quantile regression models. J Korean Stat Soc 46:462–475

    Article  MathSciNet  Google Scholar 

  • Yu P, Du J, Zhang Z (2018) Single-index partially functional linear regression model. Stat Pap (in press)

  • Zhang X, Hua L (2011) Focused information criterion and model averaging for generalized additive partial linear models. Ann Stat 39(1):174–200

    Article  MathSciNet  Google Scholar 

  • Zhou J, Chen M (2012) Spline estimators for semi-functional linear model. Stat Probab Lett 82:505–513

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang Du.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Du’s work is supported by the National Natural Science Foundation of China (Nos. 11501018, 11771032), the Science and Technology Project of Beijing Municipal Education Commission (KM201910005015) and Program for Rixin Talents in Beijing University of Technology. Cao’s work is supported by the National Natural Science Foundation of China (No. 11701020). Zhou’s work is supported by the National Natural Science Foundation of China (No. 11861074). Xie’s work is supported by the National Natural Science Foundation of China (No. 11571340) and the Science and Technology Project of Beijing Municipal Education Commission (KM201710005032).

Appendix: Proofs

Appendix: Proofs

Before we present the proof of Theorem 1, we give some useful lemmas and their proofs. For any matrix \(\varvec{A}\), denote \(L_2\) norm for \(\varvec{A}\) as \(\Vert \varvec{A}\Vert _2 = \sup \limits _{\Vert \varvec{x}\Vert \ne 0}\frac{ \Vert \varvec{A}\varvec{x}\Vert }{\Vert \varvec{x}\Vert }.\) Let \(\eta _{0i}=\varvec{Z}_i^T\varvec{\alpha }_0+\int _0^1X_i(t)\beta _0(t)dt,\) and \(\tilde{\eta }_i=\varvec{Z}_i^T{\varvec{\alpha }}_0+\varvec{U}_i^T\varvec{\gamma }_0.\)

Lemma 1

Let \(R_i=\int _0^1X_i(t)\beta _0(t)dt-\varvec{U}_i^T\varvec{\gamma }_0\), for \(i=1,2,\dots ,n\). Under conditions C1–C7, it has

$$\begin{aligned} \Vert R_i\Vert ^2=\Vert \eta _{0i}-\tilde{\eta }_i \Vert ^2=O_p\left( n^{-(2b+a-1)/(a+2b)}\right) . \end{aligned}$$

Furthermore, one has \(\eta _{0i}-\tilde{\eta }_i=O_p\left( n^{-(2b+a-1)/2(a+2b)}\right) .\)

Proof of Lemma 1

By the Karhunen–Loève representation and the fact that sequence \(\{\phi _j\}\) forms an orthonormal basis in \(L^2([0, 1])\), we have

$$\begin{aligned} R_i= & {} \int _0^1X_i(t)\beta _0(t)dt-\varvec{U}_i^T\varvec{\gamma }_0\\= & {} \int _0^1\sum \limits _{j=1}^\infty \sum \limits _{k=1}^\infty \langle X_i,\phi _j\rangle \langle \beta _0,\phi _k\rangle \phi _j(t)\phi _k(t)dt-\sum \limits _{k=1}^m\langle X_i,\hat{\phi }_k\rangle \langle \beta _0,\phi _k\rangle \\= & {} \sum \limits _{k=1}^\infty \langle X_i,\phi _k\rangle \langle \beta _0,\phi _k\rangle -\sum \limits _{k=1}^m\langle X_i,\hat{\phi }_k\rangle \langle \beta _0,\phi _k\rangle \\= & {} \sum \limits _{k=1}^m\langle X_i,\phi _k\rangle \langle \beta _0,\phi _k\rangle -\sum \limits _{k=1}^m\langle X_i,\hat{\phi }_k\rangle \langle \beta _0,\phi _k\rangle +\sum \limits _{k=1+m}^\infty \langle X_i,\phi _k\rangle \langle \beta _0,\phi _k\rangle \\= & {} \sum \limits _{k=1}^m \langle X_i,\phi _k-\hat{\phi }_k\rangle \gamma _k+\sum \limits _{k=1+m}^\infty x_{ik}\gamma _k\\= & {} I_1+I_2, \end{aligned}$$

where

$$\begin{aligned} I_1=\sum \limits _{k=1}^m \langle X_i,\phi _k-\hat{\phi }_k\rangle \gamma _k \end{aligned}$$

and

$$\begin{aligned} I_2= \sum \limits _{k=1+m}^\infty x_{ik}\gamma _k. \end{aligned}$$

First, we consider \(I_1.\) By triangle inequality, C1 and C2, we have

$$\begin{aligned} \Vert I_1\Vert ^2= & {} \Vert \sum \limits _{k=1}^m \langle X_i,\phi _k-\hat{\phi }_k\rangle \gamma _k \Vert ^2\\\le & {} m \sum \limits _{k=1}^m \Vert \langle X_i,\phi _k-\hat{\phi }_k\rangle \gamma _k \Vert ^2 \\\le & {} m\sum \limits _{k=1}^m \Vert \phi _k-\hat{\phi }_k\Vert ^2|\gamma _k |^2\\\le & {} O_p(m)\sum \limits _{k=1}^m \frac{k^2}{ n}k^{-2b} \\\le & {} O_p\left( \frac{m}{ n }\right) \sum \limits _{k=1}^m k^{-2b+2}\\\le & {} O_p\left( \frac{m}{n}\right) . \end{aligned}$$

Next, we consider \(I_2\). Invoking the fact that \(x_{ik}=\langle X_i,\phi _k\rangle \) are uncorrelated random variables, we have

$$\begin{aligned} \text {E}\left( \Vert I_2\Vert ^2\right)= & {} \text {E}\left( \sum \limits _{k=1+m}^\infty x_{ik}\gamma _k\right) ^2\\= & {} \sum \limits _{k=1+m}^\infty \sum \limits _{j=1+m}^\infty \gamma _k\gamma _j \text {E}\left( x_{ik} x_{ij}\right) \\= & {} \sum \limits _{k=1+m}^\infty \gamma _k^2\text {E}\left( x_{ik}^2\right) \\= & {} \sum \limits _{k=1+m}^\infty \gamma _k^2\lambda _k\\\le & {} C\sum \limits _{k=1+m}^\infty k^{-2b} k^{-a} \\\le & {} C\sum \limits _{k=1+m}^\infty k^{-(2b+a)} \\= & {} O\left( m^{-(2b+a-1)}\right) . \end{aligned}$$

By C3, we have \(I_2=O_p\left( m^{-(2b+a-1)/2}\right) =O_p\left( n^{-\frac{(2b+a-1)}{2(a+2b)}}\right) .\) Combining the convergence rate of \(I_1\) with \(I_2\)’s, we have

$$\begin{aligned} R_i= & {} O_p\left( \sqrt{\frac{m}{n}}\right) +O_p\left( n^{-\frac{(2b+a-1)}{2(a+2b)}}\right) \\= & {} O_p\left( n^{-\frac{(2b+a-1)}{2(a+2b)}}\right) . \end{aligned}$$

By direct calculation and the fact \(\Vert R_i\Vert ^2=\Vert \eta _{0i}-\tilde{\eta }_i \Vert ^2=O_p\left( n^{-(2b+a-1)/(a+2b)}\right) \), we have

$$\begin{aligned} \eta _{0i}-\tilde{\eta }_i=O_p\left( n^{-(2b+a-1)/2(a+2b)}\right) . \end{aligned}$$

Thus Lemma 1 is proved. \(\square \)

Let

$$\begin{aligned} \check{\varvec{\alpha }}= & {} \arg \max \limits _{\varvec{\alpha }} \sum _{i=1}^n Q\left( Y_i,g^{-1}\left( (\varvec{Z}_i- {\varvec{h}}(X_i))^T\varvec{\alpha }+\varvec{U}_i^T\varvec{\gamma }_0+ {\varvec{h}}(X_i)\varvec{\alpha }_0\right) \right) \\= & {} \sum _{i=1}^n Q\left( Y_i,g^{-1}\left( \tilde{\varvec{Z}}_i ^T\varvec{\alpha }+\varvec{U}_i^T\varvec{\gamma }_0+ {\varvec{h}}(X_i)\varvec{\alpha }_0\right) \right) , \end{aligned}$$

where \( \tilde{ \varvec{Z}}_i =\varvec{Z}_i- {\varvec{h}}(X_i)\) and \(\varvec{\gamma }_0=( \langle \beta _0, \hat{\phi }_1\rangle ,\langle \beta _0, \hat{\phi }_2\rangle ,\dots ,\langle \beta _0, \hat{\phi }_m\rangle )^T.\) The following lemma gives the asymptotic distribution of \(\check{\varvec{\alpha }}.\)

Lemma 2

Under conditions C1–C7, it has

$$\begin{aligned} \sqrt{n}(\check{\varvec{\alpha }}- {\varvec{\alpha }}_0) \rightarrow N\left( 0, \Sigma _{1}^{-1} \Sigma _2 \Sigma _{1}^{-1}\right) , \end{aligned}$$

where \( \Sigma _{1} =E[\rho _2(\eta _0)\tilde{\varvec{Z}}\tilde{ \varvec{Z}}^T]\), \( \Sigma _2 =E[q_1^2(\eta _0)\tilde{\varvec{Z}} \tilde{\varvec{Z}}^T]\) and \(\tilde{ \varvec{Z}}=\varvec{Z}-\varvec{h}(X)\).

Proof of Lemma 2

Let \(\varvec{u}=\sqrt{n}( \varvec{\alpha }- {\varvec{\alpha }}_0) \) and \(\check{\varvec{u}}= \sqrt{n}(\check{\varvec{\alpha }}- {\varvec{\alpha }}_0).\) Since that \(\check{\varvec{\alpha }}\) maximizes \( \sum _{i=1}^n Q\left( Y_i,g^{-1}\left( \tilde{ \varvec{Z}}_i^T\varvec{\alpha }+\varvec{U}_i^T\varvec{\gamma }_0+{\varvec{h}}(X_i)\varvec{\alpha }_0\right) \right) \), we have \(\check{\varvec{u}}\) maximizes

$$\begin{aligned} M_n(\varvec{u})= & {} \sum _{i=1}^n Q\left( Y_i,g^{-1}( \tilde{\varvec{Z}}_i^T{\varvec{\alpha }}_0+\varvec{U}_i^T\varvec{\gamma }_0+{\varvec{h}}(X_i)\varvec{\alpha }_0+ \tilde{ \varvec{Z}}_i^T\varvec{u}/\sqrt{n})\right) \\&- \sum _{i=1}^n Q\left( Y_i,g^{-1}(\varvec{Z}_i^T{\varvec{\alpha }}_0+\varvec{U}_i^T\varvec{\gamma }_0)\right) . \end{aligned}$$

Invoking Taylor expansion, one has

$$\begin{aligned} M_n(\varvec{u})= & {} \frac{1}{\sqrt{n}}\sum _{i=1}^n q_1\left( Y_i,\tilde{\eta }_i\right) \tilde{ \varvec{Z}}_i^T\varvec{u}+\frac{1}{2} \varvec{u}^T \Sigma _n \varvec{u}, \end{aligned}$$

where

$$\begin{aligned} \Sigma _n= & {} \frac{1}{n}\sum _{i=1}^nq_2\left( Y_i,\tilde{\eta }_i+\zeta _i\right) \tilde{ \varvec{Z}}\tilde{ \varvec{Z}}_i^T\\= & {} \frac{1}{n}\sum _{i=1}^n[(Y_i-g^{-1}(\tilde{\eta }_i+\zeta _i))\rho '_1(\tilde{\eta }_i+\zeta _i)-\rho _2(\tilde{\eta }_i+\zeta _i)] \tilde{ \varvec{Z}}_i \tilde{ \varvec{Z}}_i^T \end{aligned}$$

with \(\zeta _i\) lies between 0 and \(\tilde{ \varvec{Z}}_i^T\varvec{u}/\sqrt{n}\) for \(i=1,2,\dots ,n.\)

Denote \( \mathcal {F}_n=\{ q_2(y,u): y\in R, | u |\le C\}, \) where C is a constant. By Theorem 2.7.1 of van der Vaart and Wellner (1996), one has that \(\mathcal {F}_n\) is a P-Donsker class of measurable functions. Thus, by Theorem 19.24 of van der Vaart (1998), we have

$$\begin{aligned} \Sigma _n=-\frac{1}{n}\sum _{i=1}^n\rho _2(\eta _{0i}) \tilde{ \varvec{Z}}_i\tilde{ \varvec{Z}}_i^T+o_p(1)=-\text {E}[\rho _2(\eta _{0}) \tilde{\varvec{Z}}\tilde{\varvec{Z}}^T]+o_p(1) =-\Sigma _{1}+o_p(1). \end{aligned}$$
(5)

In addition,

$$\begin{aligned} \frac{1}{\sqrt{n}}\sum _{i=1}^n q_1\left( Y_i,\tilde{\eta }_i\right) \tilde{ \varvec{Z}}_i= & {} \frac{1}{\sqrt{n}}\sum _{i=1}^n q_1\left( Y_i, \eta _{0i}\right) \tilde{ \varvec{Z}}_i+\frac{1}{\sqrt{n}}\sum _{i=1}^n q_2\left( Y_i, \eta _{0i}\right) \tilde{ \varvec{Z}}_i(\tilde{\eta }_i-\eta _{0i})\\&+ O_p(\sqrt{n} n^{-(2b+a-1)/(a+2b)})\\= & {} \frac{1}{\sqrt{n}}\sum _{i=1}^n q_1\left( Y_i, \eta _{0i}\right) \tilde{ \varvec{Z}}_i+\frac{1}{\sqrt{n}}\sum _{i=1}^n q_2\left( Y_i, \eta _{0i}\right) \tilde{ \varvec{Z}}_i(\tilde{\eta }_i-\eta _{0i})\\&+o_p(1)\\= & {} I_{3}+I_{4}+ o_p(1), \end{aligned}$$

where

$$\begin{aligned} I_{3}=\frac{1}{\sqrt{n}}\sum _{i=1}^n q_1\left( Y_i, \eta _{0i}\right) \tilde{ \varvec{Z}}_i \end{aligned}$$

and

$$\begin{aligned} I_{4}=\frac{1}{\sqrt{n}}\sum _{i=1}^n q_2\left( Y_i, \eta _{0i}\right) \tilde{ \varvec{Z}}_i(\tilde{\eta }_i-\eta _{0i}). \end{aligned}$$

By routine calculation, we have \(I_{4}= O_p\left( n^{-(2b+a-1)/2(a+2b)}\right) =o_p(1).\)

Therefore, we have

$$\begin{aligned} \frac{1}{\sqrt{n}}\sum _{i=1}^n q_1\left( Y_i,\tilde{\eta }_i\right) \tilde{ \varvec{Z}}_i = \frac{1}{\sqrt{n}}\sum _{i=1}^n q_1\left( Y_i, \eta _{0i} \right) \tilde{ \varvec{Z}}_i + o_p(1). \end{aligned}$$
(6)

Let \(\varvec{W}_n=\frac{1}{\sqrt{n}}\sum _{i=1}^n q_1\left( Y_i, \eta _{0i} \right) \tilde{\varvec{Z}}_i.\) By the Lindeberg-Feller central limit theorem, we have

$$\begin{aligned} \varvec{W}_n \rightarrow N\left( 0, \Sigma _2 \right) , \end{aligned}$$
(7)

where \( \Sigma _2 =E[q_1^2(Y,\eta _0)\tilde{\varvec{Z}} \tilde{\varvec{Z}}^T].\) Combining (5) with (7), we have

$$\begin{aligned} M_n(\varvec{u})= & {} \varvec{W}_n^T \varvec{u}-\frac{1}{2} \varvec{u}^T \Sigma _{1} \varvec{u}+o_p(1). \end{aligned}$$

Here, the epi-convergence results of Geyer (1994) and Convexity Lemma of Pollard (1991) imply that

$$\begin{aligned} \check{\varvec{u}}= \Sigma _{1}^{-1}\varvec{W}_n +o_p(1). \end{aligned}$$
(8)

By Slutsky Lemma, we have

$$\begin{aligned} \sqrt{n}(\check{\varvec{\alpha }}- {\varvec{\alpha }}_0) \rightarrow N\left( 0, \Sigma _{1}^{-1} \Sigma _2 \Sigma _{1}^{-1}\right) . \end{aligned}$$

Thus, the proof for Lemma 2 is completed. \(\square \)

Denote \(\hat{\varvec{\theta }}=(\hat{\varvec{\alpha }}^T,\hat{\varvec{\gamma }}^T)^T\) and \( \check{{\varvec{\theta }}}=( {\check{\varvec{\alpha }}}^T, {\varvec{\gamma }_0}^T)^T.\) We further have the following lemma.

Lemma 3

Under conditions C1–C7, it has

$$\begin{aligned} \Vert \hat{\varvec{\theta }}-\check{{\varvec{\theta }}}\Vert =O_p\left( n^{-(2b-1)/2(a+2b) }\right) . \end{aligned}$$

Proof of Lemma 3

Note that

$$\begin{aligned} \frac{\partial L(\varvec{\theta })}{\partial \varvec{\theta }}\large \mid _{\varvec{\theta }=\hat{\varvec{\theta }}}- \frac{\partial L(\varvec{\theta })}{\partial \varvec{\theta }} \mid _{\varvec{\theta }= \check{{\varvec{\theta }}}}= \frac{\partial ^2 L(\varvec{\theta })}{\partial \varvec{\theta }\partial \varvec{\theta }^T} \mid _{\varvec{\theta }= \bar{\varvec{\theta }}}(\hat{\varvec{\theta }}-\check{{\varvec{\theta }}}), \end{aligned}$$

where \(\bar{\varvec{\theta }}=\nu \hat{\varvec{\theta }}+(1-\nu )\check{{\varvec{\theta }}}\), and \(0\le \nu \le 1.\) By the fact that \( \frac{\partial L(\hat{\varvec{\theta }})}{\partial \varvec{\theta }}=0,\) we have

$$\begin{aligned} \hat{\varvec{\theta }}-\check{{\varvec{\theta }}}=-\left( \frac{\partial ^2 L(\varvec{\theta })}{\partial \varvec{\theta }\partial \varvec{\theta }^T} \mid _{\varvec{\theta }= \bar{\varvec{\theta }}}\right) ^{-1} \frac{\partial L(\varvec{\theta })}{\partial \varvec{\theta }} \mid _{\varvec{\theta }= \check{{\varvec{\theta }}}}. \end{aligned}$$

First, we consider \(\frac{\partial L(\varvec{\theta })}{\partial \varvec{\theta }} \mid _{\varvec{\theta }= \check{{\varvec{\theta }}}}.\)

$$\begin{aligned} \frac{\partial L(\varvec{\theta })}{\partial \varvec{\theta }} \mid _{\varvec{\theta }= \check{{\varvec{\theta }}}}= & {} \left\{ \left( \frac{\partial L(\check{{\varvec{\theta }}})}{\partial \varvec{\alpha }}\right) ^T, \left( \frac{\partial L(\check{{\varvec{\theta }}})}{\partial \varvec{\gamma }}\right) ^T\right\} ^T\\= & {} \sum _{i=1}^n q_1\left( Y_i, \check{\eta }_{i}\right) (\varvec{Z}_i^T,\varvec{U}_i^T)^T , \end{aligned}$$

where \( \frac{\partial L(\check{{\varvec{\theta }}})}{\partial \varvec{\alpha }}= \sum _{i=1}^n q_1\left( Y_i, \check{\eta }_{i}\right) \varvec{Z}_i \), \(\frac{\partial L(\check{{\varvec{\theta }}})}{\partial \varvec{\gamma }} = \sum _{i=1}^n q_1\left( Y_i, \check{\eta }_{i}\right) \varvec{U}_i. \) and \(\check{{\eta _i}}=\varvec{Z}_i^T{\check{\alpha }}+\varvec{U}_i^T\varvec{\gamma }_0,\ i=1,\ldots ,n\). Note that

$$\begin{aligned} \frac{\partial L(\check{{\varvec{\theta }}})}{\partial \varvec{\alpha }}= & {} \sum _{i=1}^n q_1\left( Y_i, \check{\eta }_{i}\right) \varvec{Z}_i\\= & {} \sum _{i=1}^n q_1\left( Y_i, \eta _{0i}\right) \varvec{Z}_i+ \sum _{i=1}^n q_2\left( Y_i, { \eta }^*_{i}\right) (\varvec{Z}_i^T(\check{\varvec{\alpha }}- {\varvec{\alpha }}_0) +R_i)\varvec{Z}_i \end{aligned}$$

and

$$\begin{aligned} \frac{\partial L(\check{{\varvec{\theta }}})}{\partial \varvec{\gamma }}= & {} \sum _{i=1}^n q_1\left( Y_i, \check{\eta }_{i}\right) \varvec{U}_i\\= & {} \sum _{i=1}^n q_1\left( Y_i, \eta _{0i}\right) \varvec{U}_i+ \sum _{i=1}^n q_2\left( Y_i, { \eta }^*_{i}\right) (\varvec{Z}_i^T(\check{\varvec{\alpha }}- {\varvec{\alpha }}_0) +R_i)\varvec{U}_i, \end{aligned}$$

where \({ \eta }^*_{i}=\nu \eta _{0i}+(1-\nu )\check{\eta }_{i},\) \(0\le \nu \le 1\) for \(i=1,2,\dots ,n.\) By routine calculation, we have

$$\begin{aligned} E\left( \left\| \sum _{i=1}^n q_1\left( Y_i, \eta _{0i}\right) \varvec{Z}_i\right\| \right) = O(\sqrt{n}). \end{aligned}$$
(9)

In addition, by condition C2 and the fact \(\Vert R_i\Vert ^2=O_p(n^{-(2b+a-1)/(a+2b)})\), we have

$$\begin{aligned} \left\| \sum _{i=1}^n q_2\left( Y_i, { \eta }^*_{i}\right) (\varvec{Z}_i^T(\check{\varvec{\alpha }}- {\varvec{\alpha }}_0) +R_i)\varvec{Z}_i \right\|= & {} O_p(\sqrt{n})+O_p\left( n\cdot n^{-(2b+a-1)/2(a+2b) }\right) \nonumber \\= & {} O_p\left( n\cdot n^{-(2b+a-1)/2(a+2b) }\right) . \end{aligned}$$
(10)

Combining (9) with (10), one has \( \frac{\partial L(\check{{\varvec{\theta }}})}{\partial \varvec{\alpha }}= \sum _{i=1}^n q_1\left( Y_i, \check{\eta }_{i}\right) \varvec{Z}_i=O_p\left( n n^{-(2b+a-1)/2(a+2b) }\right) . \)

Similarly, we have

$$\begin{aligned} E\left( \left\| \sum _{i=1}^n q_1\left( Y_i, \eta _{0i}\right) \varvec{U}_i\right\| ^2\right) =O(nm). \end{aligned}$$
(11)

and

$$\begin{aligned} \Vert \sum _{i=1}^n q_2\left( Y_i, { \eta }^*_{i}\right) (\varvec{Z}_i^T(\check{\varvec{\alpha }}- {\varvec{\alpha }}_0) +R_i)\varvec{U}_i \Vert =O_p(\sqrt{nm}). \end{aligned}$$
(12)

Combining (11) with (12), one has \( \frac{\partial L(\check{{\varvec{\theta }}})}{\partial \varvec{\gamma } }= \sum _{i=1}^n q_1\left( Y_i, {\eta }^*_{i}\right) \varvec{U}_i= O_p\left( n n^{-(2b+a-1)/2(a+2b) }\right) . \) Therefore, we have

$$\begin{aligned} \left\| \frac{\partial L(\varvec{\theta })}{\partial \varvec{\theta }} \mid _{\varvec{\theta }= \check{{\varvec{\theta }}}}\right\| = O_p\left( n n^{-(2b+a-1)/2(a+2b) }\right) . \end{aligned}$$
(13)

Following Lemma A.3 of Wang et al. (2011), we have

$$\begin{aligned} \left\| \left( \frac{1}{n}\frac{\partial ^2 L(\varvec{\theta })}{\partial \varvec{\theta }\partial \varvec{\theta }^T} \mid _{\varvec{\theta }= \bar{\varvec{\theta }}}\right) ^{-1}\right\| =O_p\left( \frac{1}{\sqrt{\lambda _m}}\right) =O_p\left( \sqrt{m^{a}}\right) . \end{aligned}$$
(14)

By (13) and (14), we have

$$\begin{aligned} \Vert \hat{\varvec{\theta }}-\check{{\varvec{\theta }}}\Vert\le & {} \left\| \left( \frac{1}{n}\frac{\partial ^2 L(\varvec{\theta })}{\partial \varvec{\theta }\partial \varvec{\theta }^T} \mid _{\varvec{\theta }= \bar{\varvec{\theta }}}\right) ^{-1} \right\| \left\| \frac{1}{n} \frac{\partial L(\varvec{\theta })}{\partial \varvec{\theta }} \mid _{\varvec{\theta }= \check{{\varvec{\theta }}}}\right\| \\= & {} O_p\left( \sqrt{m^{a}}\right) O_p\left( n^{-(2b+a-1)/2(a+2b) }\right) \\= & {} O_p\left( n^{-(2b-1)/2(a+2b) }\right) . \end{aligned}$$

\(\square \)

Proof of Theorem 1

Similar to Lu et al. (2014), one has

$$\begin{aligned} \Vert \hat{\beta }-\beta _{0}\Vert ^{2}= & {} \left\| \sum _{j=1}^{m}\hat{\gamma }_{j}\hat{\phi }_{j}-\sum _{j=1}^{\infty }\gamma _{j}\phi _{j}\right\| ^{2}\\\le & {} 2\left\| \sum _{j=1}^{m}\hat{\gamma }_{j}\hat{\phi }_{j}-\sum _{j=1}^{m}\gamma _{j}\phi _{j}\right\| ^{2} +2\left\| \sum _{j=m+1}^{\infty }\gamma _{j}\phi _{j}\right\| ^{2}\\\le & {} 4\left\| \sum _{j=1}^{m}(\hat{\gamma }_{j}-\gamma _{j})\hat{\phi }_{j}\right\| ^{2} +4\left\| \sum _{j=1}^{m}\gamma _{j}(\hat{\phi }_{j}-\phi _{j})\right\| ^{2} +2\sum _{j=m+1}^{\infty }\gamma _{j}^{2}\\\le & {} 4\left\| \hat{\varvec{\gamma }} -\varvec{\gamma }_{0} \right\| ^{2} +4\left\| \sum _{j=1}^{m}\gamma _{j}(\hat{\phi }_{j}-\phi _{j})\right\| ^{2} +2\sum _{j=m+1}^{\infty }\gamma _{j}^{2}\\= & {} 4\left\| \hat{\varvec{\gamma }} -\varvec{\gamma }_{0} \right\| ^{2}+4I_{5}+2I_{6}. \end{aligned}$$

Now, we consider \(I_{5}.\) Note that \(\Vert \phi _{j}-\hat{\phi }_{j}\Vert ^2=O_p(n^{-1}j^2)\), one has

$$\begin{aligned} I_{5}\le & {} m\sum _{j=1}^{m}\Vert \hat{\phi }_{j}-\phi _{j}\Vert ^{2}\gamma _{j}^{2}\\\le & {} O_p(1) n^{-1}m\sum _{j=1}^{m}j^{2}\gamma _{j}^{2}\\= & {} O_{p}\left( n^{-1}m\right) \\= & {} O_{p}\left( n^{-\frac{a+2b-1}{a+2b}}\right) . \end{aligned}$$

Next, we consider \(I_{6}.\)

$$\begin{aligned} I_{6}\le & {} C\sum _{j=m+1}^{\infty }\gamma _{j}^{2}\\\le & {} C\sum _{j=m+1}^{\infty }j^{-2b}\\= & {} O\left( m^{-(2b-1)}\right) \\= & {} O\left( n^{-\frac{2b-1}{a+2b}}\right) . \end{aligned}$$

Therefore, combining these with Lemma 3, we have

$$\begin{aligned} \Vert \hat{\beta }-\beta _0\Vert ^{2}=O_p\left( n^{-(2b-1)/(a+2b) }\right) . \end{aligned}$$

Next, we prove the asymptotic normality of \(\hat{\varvec{\alpha }}\). Let \(\hat{\eta }_{i}=\varvec{Z}_i^T\hat{\varvec{\alpha }}+\varvec{U}_i^T\hat{\varvec{\gamma }}.\) For any \(\varvec{v}\in R^p\), define

$$\begin{aligned} \hat{\eta }(\varvec{v})= & {} \varvec{Z}^T\hat{\varvec{\alpha }}+\varvec{U}^T\hat{\varvec{\gamma }}+(\varvec{Z}-h(X))^T\varvec{v} \\= & {} \varvec{Z}^T(\hat{\varvec{\alpha }}+\varvec{v})+\varvec{U}^T\hat{\varvec{\gamma }}- h(X)^T\varvec{v} . \end{aligned}$$

Note that when \(\varvec{v} = 0,\) \(\hat{\eta }(\varvec{v})\) maximizes \(L(\hat{\eta }(\varvec{v}))= \sum _{i=1}^nQ\left( Y_i,g^{-1}\left( \hat{\eta }_i(\varvec{v})\right) \right) .\) Thus, one has

$$\begin{aligned} \frac{\partial L(\hat{\eta }(\varvec{v}))}{ \partial \varvec{v}}\large \mid _{\varvec{v}=0}=0. \end{aligned}$$

By Lemma 3, we have

$$\begin{aligned} 0=\frac{\partial L(\hat{\eta }(\varvec{v}))}{ \partial \varvec{v}}\large \mid _{\varvec{v}=0}= & {} \sum _{i=1}^n q_1\left( Y_i, \hat{\eta }_{i}\right) \tilde{ \varvec{Z}}_i\\= & {} \sum _{i=1}^n \left( Y_i-g^{-1}(\hat{\eta }_{i})\right) \rho _1(\hat{\eta }_{i}) \tilde{\varvec{Z}}_i\\= & {} \sum _{i=1}^n \left( Y_i-g^{-1}( {\eta }_{0i})\right) \rho _1({\eta }_{0i}) \tilde{\varvec{Z}}_i\\&+ \sum _{i=1}^n \varepsilon _i(\rho _1(\hat{\eta }_{i})-\rho _1({\eta }_{0i})) \tilde{\varvec{Z}}_i\\&+ \sum _{i=1}^n \left( g^{-1}( {\eta }_{0i})-g^{-1}(\hat{\eta }_{i})\right) \rho _1(\hat{\eta }_{i})\tilde{\varvec{Z}}_i\\= & {} A_1+A_2+A_3. \end{aligned}$$

We first consider \(A_2.\) Obviously, \(E(A_2)=0.\) By Lemma 1, we have

$$\begin{aligned} E(A_2^2)= & {} \sum _{i=1}^n E\left( V(\eta _i)(\rho _1(\hat{\eta }_{i})-\rho _1({\eta }_{0i}))^2 \tilde{\varvec{Z}}_i\tilde{\varvec{Z}}_i^T\right) \\\le & {} C \sum _{i=1}^n E\left( (\hat{\eta }_{i}-{\eta }_{i})^2 \tilde{\varvec{Z}}_i\tilde{\varvec{Z}}_i^T\right) \\= & {} O(m). \end{aligned}$$

Thus, one has \(A_2=O_p\left( \sqrt{m}\right) =o_p\left( {\sqrt{n}}\right) .\) Now, we consider \(A_3.\) Note that

$$\begin{aligned} A_3= & {} \sum _{i=1}^n \left( g^{-1}( {\eta }_{0i})-g^{-1}(\hat{\eta }_{i})\right) \rho _1(\hat{\eta }_{i})\tilde{ \varvec{Z}}_i\\= & {} \sum _{i=1}^n \left( g^{-1}( {\eta }_{0i})-Y_i+Y_i-g^{-1}(\hat{\eta }_{i})\right) \rho _1(\hat{\eta }_{i})\tilde{ \varvec{Z}}_i\\= & {} \sum _{i=1}^n \left( Y_i-g^{-1}(\hat{\eta }_{i})\right) \rho _1(\hat{\eta }_{i})\tilde{ \varvec{Z}}_i-\sum _{i=1}^n\left( Y_i-g^{-1}({\eta }_{0i})\right) \rho _1({\eta }_{0i})\tilde{ \varvec{Z}}_i\\&-\sum _{i=1}^n \left( Y_i-g^{-1}({\eta }_{0i})\right) (\rho _1({\hat{\eta }}_{i})-\rho _1({\eta }_{0i}))\tilde{ \varvec{Z}}_i\\= & {} \sum _{i=1}^n (q_1(\hat{\eta }_{i})-q_1({\eta }_{0i}))\tilde{ \varvec{Z}}_i-\sum _{i=1}^n \left( Y_i-g^{-1}({\eta }_{0i})\right) (\rho _1({\hat{\eta }}_{i})-\rho _1({\eta }_{0i}))\tilde{ \varvec{Z}}_i\\= & {} \sum _{i=1}^n q_2({\eta }_{0i})(\hat{\eta }_i-\eta _{0i})\tilde{ \varvec{Z}}_i+o_p(\sqrt{n})\\&-\sum _{i=1}^n \left( Y_i-g^{-1}({\eta }_{0i})\right) (\rho _1({\hat{\eta }}_{i})-\rho _1({\eta }_{0i}))\tilde{ \varvec{Z}}_i\\= & {} \sum _{i=1}^n \left( Y_i-g^{-1}({\eta }_{0i})\right) \rho _1'({\eta }_{0i})(\hat{\eta }_i-\eta _{0i})\tilde{ \varvec{Z}}_i-\sum _{i=1}^n \rho _2(\eta _{i0})(\hat{\eta }_i-\eta _{0i})\tilde{ \varvec{Z}}_i\\&-\sum _{i=1}^n \left( Y_i-g^{-1}({\eta }_{0i})\right) (\rho _1({\hat{\eta }}_{i})-\rho _1({\eta }_{0i}))\tilde{ \varvec{Z}}_i+o_p(\sqrt{n})\\= & {} -\sum _{i=1}^n \rho _2(\eta _{i0})(\hat{\eta }_i-\eta _{0i})\tilde{ \varvec{Z}}_i+o_p(\sqrt{n}). \end{aligned}$$

Invoking Lemmas 2 and 3, we have

$$\begin{aligned} \sum _{i=1}^n \rho _2(\eta _{i0})(\hat{\eta }_i-\eta _{0i})\tilde{ \varvec{Z}}_i=\sum _{i=1}^n \rho _2(\eta _{i0})\tilde{ \varvec{Z}}_i \tilde{ \varvec{Z}}^T_i(\hat{\varvec{\alpha }}-\varvec{\alpha }_0)+o_p(\sqrt{n}). \end{aligned}$$

Thus, by \(A_1,\) \(A_2\) and \(A_3\), we have

$$\begin{aligned} \frac{1}{n}\sum _{i=1}^n \rho _2( {\eta }_{0i})\tilde{ \varvec{Z}}_i\tilde{ \varvec{Z}}_i^T(\hat{\varvec{\alpha }}-{\varvec{\alpha }_0})=\frac{1}{n}\sum _{i=1}^n \left( Y_i-g^{-1}( {\eta }_{0i})\right) \rho _1({\eta }_{0i})\tilde{\varvec{Z}}_i+o_p\left( \frac{1}{\sqrt{n}}\right) . \end{aligned}$$

Furthermore, by the central limit theorem and slutsky’s Lemma, we have

$$\begin{aligned} \sqrt{n}(\hat{\varvec{\alpha }}-{\varvec{\alpha }}_0)\rightarrow N(0,\Sigma _{1}^{-1}\Sigma _{2} \Sigma _{1}^{-1}), \end{aligned}$$

where \(\Sigma _{1}=E\left( \rho _2( {\eta _0})\tilde{ \varvec{Z}}\tilde{ \varvec{Z}}^T\right) \) and \(\Sigma _{2}=E\left( q_1^2( {\eta _0})\tilde{ \varvec{Z}}\tilde{\varvec{Z}}^T\right) \). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, R., Du, J., Zhou, J. et al. FPCA-based estimation for generalized functional partially linear models. Stat Papers 61, 2715–2735 (2020). https://doi.org/10.1007/s00362-018-01066-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-018-01066-8

Keywords

Mathematics Subject Classification

Navigation