Skip to main content
Log in

Penalized weighted composite quantile estimators with missing covariates

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

In this paper, we propose the penalized weighted composite quantile regression estimation for linear model when the covariates are missing at random. Under some mild conditions, the asymptotic normality, oracle property and Horvitz–Thompson property of the proposed estimators are established. Simulation results and a real data analysis are provided to examine the performance of our methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Fan J, Li R (2001) Variable selection via nonconcave penalized likelihood and its oracle properties. J Am Stat Assoc 96:1348–1360

    Article  MathSciNet  MATH  Google Scholar 

  • Guo J, Tang M, Tian M, Zhu K (2013) Variable selection in high-dimensional partially linear additive models for composite quantile regression. Comput Stat Data Anal 65:56–67

    Article  MathSciNet  Google Scholar 

  • Horvitz DG, Thompson DJ (1952) A generalization of sampling without replacement from a finite universe. J Am Stat Assoc 47:663–685

    Article  MathSciNet  MATH  Google Scholar 

  • Jiang R, Qian WM, Zhou ZZ (2012) Variable selection and coefficient estimation via composite quantile regression with randomly censored data. Stat Probab Lett 82:308–317

    Article  MathSciNet  MATH  Google Scholar 

  • Kim MO (2007) Quantile regression with varying coffficients. Ann Stat 35:92–108

    Article  MATH  Google Scholar 

  • Knight K (1998) Limiting distributions for L1 regression estimators under general conditions. Ann Stat 26:755–770

    Article  MATH  Google Scholar 

  • Koenker R (2005) Quantile regression. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Koenker R, Bassett GS (1978) Regression quantiles. Econometrica 46:33–50

    Article  MathSciNet  MATH  Google Scholar 

  • Liang H, Wang S, Robins JM, Carroll RJ (2004) Estimation in partially linear models with missing covariates. J Am Stat Assoc 99:357–367

    Article  MathSciNet  MATH  Google Scholar 

  • Liang H (2008) Generalized partially linear models with missing covariates. J Multivar Anal 99:880–895

    Article  MATH  Google Scholar 

  • Tang LJ, Zhou ZG, Wu CC (2012) Weighted composite quantile estimation and variable selection method for censored regression model. Stat Probab Lett 82:653–663

    Article  MathSciNet  MATH  Google Scholar 

  • Tang QG (2014) Robust estimation for spatial semiparametric varying coefficient partially linear regression. Stat Papers http://dx.doi.org/10.1007/s00362-014-0629-z

  • Tibshirani R (1996) Regression shrinkage and selection via the LASSO. J R Stat Soc B 58:267–288

    MathSciNet  MATH  Google Scholar 

  • Sherwood B, Wang L, Zhou XH (2013) Weighted quantile regression for analyzing health care cost data with missing covariates. Stat Med 32:4967–4979

    Article  MathSciNet  Google Scholar 

  • Wang CY, Chen HY (2001) Augmented inverse probability weighted estimator for Cox missing covariate regression. Biometrics 57:414–419

    Article  MathSciNet  MATH  Google Scholar 

  • Wang H, Li R, Tsai CL (2007) Tuning parameter selectors for the smoothly clipped absolute deviation method. Biometrika 94:553–568

    Article  MathSciNet  MATH  Google Scholar 

  • Wong H, Guo S, Chen M, Ip WC (2009) On locally weighted estimation and hypothesis testing of varying-coefficient models with missing covariates. J Stat Plann Infer 139:2933–2951

    Article  MathSciNet  MATH  Google Scholar 

  • Xu DK, Zhang ZZ, Wu LC (2014) Variable selection in high-dimensional double generalized linear models. Stat Pap 55:327–347

    Article  MathSciNet  MATH  Google Scholar 

  • Xue L (2013) Estimation and empirical likelihood for single-index models with missing data in the covariates. Comput Stat Data Anal 68:82–97

    Article  Google Scholar 

  • Zou H (2006) The adaptive lasso and its oracle properties. J Am Stat Assoc 101:1418–1429

    Article  MATH  Google Scholar 

  • Zou H, Yuan M (2008) Composite quantile regression and the oracle model selection theory. Ann Stat 36:1108–1126

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant No. 11171361), Ph.D. Programs Foundation of Ministry of Education of China (Grant No. 20110191110033) and Fundamental Research Funds for the Central Universities (Grant No. CDJXS12101102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huilan Liu.

Appendix: Proof of theorems

Appendix: Proof of theorems

Proof of Theorem 2.1

Let \(\sqrt{n}(\hat{\beta }^{WCQR_{\pi }}-\beta _{0})=\mu \) and \(\sqrt{n}(\hat{b}^{WCQR_{\pi }}_{k} -b_{k})=\nu _{k}\), and \(\theta =(\mu ,\nu )\). So, \(\theta \) is the minimizer of the following criterion:

$$\begin{aligned} L_{n}(\pi ,\theta )=\sum _{k=1}^K\sum _{i=1}^n\frac{V_{i}}{\pi _{i}}\left[ \rho _{\tau _{k}}\left( \varepsilon _{i}-b_{k}-\frac{\nu _{k}+X_{i}^{T}\mu }{\sqrt{n}}\right) -\rho _{\tau _{k}}(\varepsilon _{i}-b_{k})\right] . \end{aligned}$$

By Knight (1998), for any \(x\ne 0\), we have \(\rho _{\tau }(x-y)-\rho _{\tau }(x)=y[I(x<0)-\tau ]+\int _{0}^y[I(x\le t)-I(x\le 0)]dt.\) Thus, we can rewrite \(L_{n}(\pi ,\theta )\) as

$$\begin{aligned} L_{n}(\pi ,\theta )&=\sum _{k=1}^K\sum _{i=1}^n\frac{V_{i}}{\pi _{i}}\frac{\nu _{k}+X_{i}^{T}\mu }{\sqrt{n}} [I(\varepsilon _{i}< b_{k})-\tau _{k}]\\ {}&\quad +\sum _{k=1}^K\sum _{i=1}^n\frac{V_{i}}{\pi _{i}}\int _{0}^{\frac{\nu _{k}+X_{i}^{T}\mu }{\sqrt{n}}}[I(\varepsilon _{i}\le b_{k}+t)-I(\varepsilon _{i}\le b_{k})]dt\\&=\sum _{k=1}^Kz_{n,k}\nu _{k}+W_{n,K}\mu +\sum _{k=1}^KB_{n,k}, \end{aligned}$$

where

$$\begin{aligned} z_{n,k}&=\frac{1}{\sqrt{n}}\sum _{i=1}^n\frac{V_{i}}{\pi _{i}}[I(\varepsilon _{i}< b_{k})-\tau _{k}],\\ W_{n,K}&=\frac{1}{\sqrt{n}}\sum _{i=1}^n\frac{V_{i}}{\pi _{i}}X_{i}^{T}\sum _{k=1}^K[I(\varepsilon _{i}< b_{k})-\tau _{k}],\\ B_{n,k}&=\sum _{i=1}^n\frac{V_{i}}{\pi _{i}}\int _{0}^{\frac{\nu _{k}+X_{i}^{T}\mu }{\sqrt{n}}}[I(\varepsilon _{i}\le b_{k}+t)-I(\varepsilon _{i}\le b_{k})]dt. \end{aligned}$$

By the \(Cram\acute{e}r-Wald\) device and CLT, we know \(z_{n,k}\) and \(W_{n,K}\) converge in distribution to \(z_{k}\) and \(W_{1}\), where \(z_{k}\) is a normal random variable with mean \(0\), \(W_{1}\) is a \(p\)-dimensional normal random vector with \(\mathbf 0 \) and variance–covariance matrix

$$\begin{aligned} \Sigma _{1}=E\left( \frac{1}{\pi (Y)}XX^{T}\left[ \sum _{k=1}^K(I(\varepsilon <b_{k})-\tau _{k})\right] ^2\right) . \end{aligned}$$
(5.1)

where \(\pi (Y)=Pr(V=1|Y,X)=Pr(V=1|Y)\). Therefore

$$\begin{aligned} \sum _{k=1}^Kz_{n,k}\nu _{k}+W_{n,K}\mu \rightarrow _{d}\sum _{k=1}^Kz_{k}\nu _{k}+W_{1}\mu . \end{aligned}$$

Let \( B_{ni,k}=\frac{V_{i}}{\pi _{i}}\int _{0}^{\frac{\nu _{k}+X_{i}^{T}\mu }{\sqrt{n}}}[I(\varepsilon _{i}\le b_{k}+t)-I(\varepsilon _{i}\le b_{k})]dt\). For any \(\eta >0\), we have

$$\begin{aligned}{}[B_{ni,k}]^{2}=\left\{ [B_{ni,k}]^{2}I\left( \frac{\nu _{k}+X_{i}^{T}\mu }{\sqrt{n}}\ge \eta \right) \right\} +\left\{ [B_{ni,k}]^{2}I\left( \frac{\nu _{k}+X_{i}^{T}\mu }{\sqrt{n}}<\eta \right) \right\} \end{aligned}$$

On the one hand, we have

$$\begin{aligned}&nE\left\{ [B_{ni,k}]^{2}I\left( \frac{\nu _{k}+X_{i}^{T}\mu }{\sqrt{n}}\ge \eta \right) \right\} \\&\quad \le nE\left\{ \frac{V_{i}}{\pi _{i}^{2}}\left[ \int _{0}^{\frac{\nu _{k}+X_{i}^{T}\mu }{\sqrt{n}}}2dt\right] ^{2}I\left( \frac{\nu _{k}+X_{i}^{T}\mu }{\sqrt{n}}\ge \eta \right) \right\} \\&\quad \le \frac{4}{M^2}E\left[ |v_{k}+X_{i}^{T}\mu |^{2}I\left( \frac{\nu _{k}+X_{i}^{T}\mu }{\sqrt{n}}\ge \eta \right) \right] \rightarrow 0, \quad as \quad n\rightarrow \infty , \end{aligned}$$

On the other hand, we have

$$\begin{aligned}&nE\left\{ [B_{ni,k}]^{2}I\left( \frac{\nu _{k}+X_{i}^{T}\mu }{\sqrt{n}}<\eta \right) \right\} \\&\quad \le nE\left\{ \frac{2V_{i}}{\pi _{i}^2}\int _{0}^{\frac{\nu _{k}+X_{i}^{T}\mu }{\sqrt{n}}}dt\int _{0}^{\frac{\nu _{k}+X_{i}^{T}\mu }{\sqrt{n}}}[I(\varepsilon _{i}\le b_{k}+t)-I(\varepsilon _{i}\le b_{k})]dt\right. \\&\quad \quad \left. \times I(\nu _{k}+\,X_{i}^{T}\mu <\sqrt{n}\eta )\right\} \\&\quad \le \frac{2n\eta }{M^2}E\left\{ \int _{0}^{\frac{\nu _{k}+X_{i}^{T}\mu }{\sqrt{n}}}[I(\varepsilon _{i}\le b_{k}+t)-I(\varepsilon _{i}\le b_{k})dtI(\nu _{k}+X_{i}^{T}\mu <\sqrt{n}\eta )\right\} \\&\quad =\frac{2n\eta }{M^2}E_{X}\left\{ \int _{0}^{\frac{\nu _{k}+X_{i}^{T}\mu }{\sqrt{n}}}[F(b_{k}+t|X)-F(b_{k}|X)]dtI(\nu _{k}+X_{i}^{T}\mu <\sqrt{n}\eta )\right\} \\&\quad =\frac{2n\eta }{M^2}E_{X}\left\{ \int _{0}^{\frac{\nu _{k}+X_{i}^{T}\mu }{\sqrt{n}}}tf(b_{k}|X)dtI(\nu _{k}+X_{i}^{T}\mu <\sqrt{n}\eta )\right\} \\&\quad \le \frac{D\eta }{M^2}E|\nu _{k}+X_{i}^{T}\mu |^2I(\nu _{k}+X_{i}^{T}\mu \!<\!\sqrt{n}\eta )\!\le \!\frac{D\eta }{M^2}E|\nu _{k}\!+\!X_{i}^{T}\mu |^2\!\rightarrow \! 0,\quad \! as \!\quad \eta \!\rightarrow \!0. \end{aligned}$$

Since \(E|\nu _{k}+X_{i}^{T}\mu |^2\) is bounded. Thus, when \( n\rightarrow \infty \), it follows that

$$\begin{aligned}&Var(B_{n,k})=\sum _{i=1}^nVar(B_{ni,k})\le nE(B_{ni,k})^2\rightarrow 0, \end{aligned}$$

Furthermore,

$$\begin{aligned} E[B_{n,k}]&=E\left[ \sum _{i=1}^n\frac{V_{i}}{\pi _{i}}\int _{0}^{\frac{\nu _{k}+X_{i}^{T}\mu }{\sqrt{n}}}[I(\varepsilon _{i}\le b_{k}+t)-I(\varepsilon _{i}\le b_{k})]dt\right] \\&=E_{X}\left[ \sum _{i=1}^n\int _{0}^{\frac{\nu _{k}+X_{i}^{T}\mu }{\sqrt{n}}}[F(b_{k}+t|X)-F(b_{k}|X)]dt\right] \\&=E_{X}\left[ \sum _{i=1}^n\int _{0}^{\frac{\nu _{k}+X_{i}^{T}\mu }{\sqrt{n}}}tf(b_{k}|X)dt\right] +o_{p}(1)\\&=\frac{1}{2}E_{X}(f(b_{k}|X))\nu _{k}^2+\frac{1}{2}\mu ^{T}E_{X}[f(b_{k}|X)XX^{T}]\mu +o_{p}(1). \end{aligned}$$

Therefore, we get

$$\begin{aligned}&B_{n,k}\!=\!E(B_{n,k})+o_{p}(1)=\frac{1}{2}E_{X}(f(b_{k}|X))\nu _{k}^2+\frac{1}{2}\mu ^{T}E_{X}[f(b_{k}|X)XX^{T}]\mu +o_{p}(1). \end{aligned}$$

Let \(g_{k}=E_{X}(f(b_{k}|X))\) and \(C=\sum _{k=1}^KE_{X}[f(b_{k}|X)XX^{T}]\), we have

$$\begin{aligned}&L_{n}(\pi ,\theta )=\frac{1}{2}\mu ^{T}C\mu +W_{1}\mu +\frac{1}{2}\sum _{k=1}^Kg_{k}\nu _{k}^2+\sum _{k=1}^Kz_{k}\nu _{k}+o_{p}(1),\\ \end{aligned}$$

and

$$\begin{aligned}&L_{n}(\pi ,\theta )\rightarrow _{d}\frac{1}{2}\mu ^{T}C\mu +W_{1}\mu +\frac{1}{2}\sum _{k=1}^Kg_{k}\nu _{k}^2+\sum _{k=1}^Kz_{k}\nu _{k}. \end{aligned}$$

Since \(L_{n}(\pi ,\theta )\) is a convex function, following Knight (1998) and Koenker (2005), we have

$$\begin{aligned}&\mu \rightarrow _{d}N(0,C^{-1}\Sigma _{1}C^{-1}) \end{aligned}$$

where \(\Sigma _{1}\) is defined in (5.1). \(\square \)

Proof of Theorem 2.2

Let \(\sqrt{n}(\hat{\beta }^{AWCQR_{\pi }}-\beta _{0})=\mu ^{*}\), \(\sqrt{n}(\hat{b}^{AWCQR_{\pi }}_{k} -b_{k})=\nu _{k}^{*}\), and \(\theta ^{*}=(\mu ^{*},\nu ^{*})\). \(\theta ^{*}\) is the minimizer of the following criterion:

$$\begin{aligned} \mathbf L _{n}(\pi ,\theta ^{*})&=\sum _{k=1}^K\sum _{i=1}^n\frac{V_{i}}{\pi _{i}}\left[ \rho _{\tau _{k}}\left( \varepsilon _{i}-b_{k}-\frac{\nu _{k}^{*}+X_{i}\mu ^{*}}{\sqrt{n}}\right) -\rho _{\tau _{k}}(\varepsilon _{i}-b_{k})\right] \\&\ \quad +\sum _{j=1}^p\lambda _{n}\frac{(|\beta _{j}+\frac{\mu _{j}^{*}}{\sqrt{n}}|-|\beta _{j}|)}{|\hat{\beta }^{WCQR_{\pi }}_{j}|^2}\\&=L_{n}(\pi ,\theta ^{*})+\sum _{j=1}^p\lambda _{n}\frac{(|\beta _{j}+\frac{\mu _{j}^{*}}{\sqrt{n}}|-|\beta _{j}|)}{|\hat{\beta }^{WCQR_{\pi }}_{j}|^2}. \end{aligned}$$

Similar to the proof of Theorem 4.1 in Zou and Yuan (2008), the second term above can be expressed as

$$\begin{aligned}&\frac{\lambda _{n}}{\sqrt{n}|\hat{\beta }^{WCQR_{\pi }}_{j}|^2}\sqrt{n}\Big [|\beta _{j}+\frac{\mu _{j}^{*}}{\sqrt{n}}|-|\beta _{j}|\Big ]\rightarrow _{p}\ \left\{ \begin{array}{l} 0,\quad if\quad \beta _{j}\ne 0,\\ 0,\quad if \quad \beta _{j}=0 \quad and\quad \mu _{j}^{*}= 0,\\ \infty ,\quad if\quad \beta _{j}=0\quad and\quad \mu _{j}^{*}\ne 0.\\ \end{array} \right. \end{aligned}$$

Let \(\mu ^{*}=(\mu _{1}^{T*},\mu _{2}^{T*})^T\) where \(\mu _{1}^{*}\) contains the first q element of \(\mu ^{*}\). Using the same arguments in Knight (1998) and Koenker (2005), we have \(\mu _{2}^{*}\rightarrow _{p}0\) and \(\mu _{1}^{*}\rightarrow _{d}N(0,[C^{-1}\Sigma _{1}C^{-1}]_{\Lambda \Lambda }).\) Thus, asymptotic normality is proven.

Next, we prove the consistency part. Let \(\hat{\Lambda }_{n}=\{j:\hat{\beta }^{AWCQR_{\pi }}_{j}\ne 0\}\) and \(\Lambda =\{j:\beta _{j}\ne 0\}\), \(\forall j\in \Lambda ,\) the asymptotic normality indicates \(P(j\in \hat{\Lambda }_{n})\rightarrow 1.\) It suffices to show \(\forall j\notin \Lambda ,P(j\in \hat{\Lambda }_{n})\rightarrow 0.\) Note that,

$$\begin{aligned}&(\hat{b}^{AWCQR_{\pi }}_{1},\ldots ,\hat{b}^{AWCQR_{\pi }}_{K},\hat{\beta }^{AWCQR_{\pi }})\\&\quad =\mathop {\mathrm {argmin}}_{\begin{array}{c} b_1,\ldots ,b_K,\beta \end{array}} \sum _{k=1}^K \sum _{i=1}^n \frac{V_{i}}{\pi _{i}}\rho _{\tau _{k}}(Y_{i}-X_{i}^{T}\beta -b_{k}) +\sum _{j=1}^p\lambda _{n}\frac{\mid \beta _{j}\mid }{\mid \hat{\beta }^{WCQR_{\pi }}_{j}\mid ^2}. \end{aligned}$$

If \(j\in \hat{\Lambda }_{n}\), then we must have

$$\begin{aligned}&\sum _{k=1}^K \sum _{i=1}^n \frac{V_{i}}{\pi _{i}}\rho _{\tau _{k}}\left( Y_{i}-X_{ij}\hat{\beta }^{AWCQR_{\pi }}_{j}-\hat{b}^{AWCQR_{\pi }}_{k}\right) +\lambda _{n}\frac{\mid \hat{\beta }^{AWCQR_{\pi }}_{j}\mid }{\mid \hat{\beta }^{WCQR_{\pi }}_{j}\mid ^2}\\&\quad \le \sum _{k=1}^K \sum _{i=1}^n \frac{V_{i}}{\pi _{i}}\rho _{\tau _{k}}\left( Y_{i}-\hat{b}^{AWCQR_{\pi }}_{k}\right) . \end{aligned}$$

Using the fact that \(|\frac{\rho _{\tau }(x_{1})-\rho _{\tau }(x_{2})}{x_{1}-x_{2}}|\le \) max\((\tau ,1-\tau )<1,\) we have \(\frac{\lambda _{n}}{|\hat{\beta }^{WCQR_{\pi }}_{j}|^2}<\sum _{k=1}^K\sum _{i=1}^n\frac{V_{i}}{\pi _{i}}|X_{ij}|=K.\sum _{i=1}^n\frac{V_{i}}{\pi _{i}}|X_{ij}|.\) So \(P(j\in \hat{\Lambda }_{n})\le P\big (\frac{\lambda _{n}}{|\hat{\beta }^{WCQR_{\pi }}_{j}|^2}<K.\sum _{i=1}^n\frac{V_{i}}{\pi _{i}}|X_{ij}|\big )\rightarrow 0.\) This completes the proof of Theorem 2.2. \(\square \)

Proof of Theorem 2.3

Let \(\sqrt{n}(\hat{\beta }^{WCQR_{\hat{\pi }}}-\beta _{0})=\mu ^{**}\), \(\sqrt{n}(\hat{b}^{WCQR_{\hat{\pi }}}_{k} -b_{k})=\nu _{k} ^{**}\), and \(\theta ^{**}=(\mu ^{**},\nu ^{**})\). \(\theta ^{**}\) is the minimizer of the following criterion:

$$\begin{aligned} L_{n}(\widehat{\pi },\theta ^{**})=\sum _{k=1}^K\sum _{i=1}^n\frac{V_{i}}{\widehat{\pi _{i}}}\left[ \rho _{\tau _{k}}\left( \varepsilon _{i}-b_{k}-\frac{\nu _{k} ^{**}+X_{i}^{T}\mu ^{**}}{\sqrt{n}}\right) -\rho _{\tau _{k}}(\varepsilon _{i}-b_{k})\right] , \end{aligned}$$

Let \(Q_{n}(\pi ,\theta ^{**})=\sum _{k=1}^K\sum _{i=1}^n\frac{V_{i}}{\pi _{i}}\left[ \rho _{\tau _{k}}\left( \varepsilon _{i}-b_{k}-\frac{\nu _{k} ^{**}+X_{i}^{T}\mu ^{**}}{\sqrt{n}}\right) \right] .\)

$$\begin{aligned} L_{n}(\widehat{\pi },\theta ^{**})&=[Q_{n}(\pi ,\theta ^{**})-Q_{n}(\pi ,0)]+[Q_{n}(\widehat{\pi },\theta ^{**})-Q_{n}(\pi ,\theta ^{**})]\\&\quad \ -[Q_{n}(\widehat{\pi },0)-Q_{n}(\pi ,0)]\\&=I_{1}+I_{2}-I_{3}, \end{aligned}$$

where

$$\begin{aligned}&I_{1}=L_{n}(\pi ,\theta ^{**}),\\&I_{2}=\sum _{k=1}^K\sum _{i=1}^nV_{i}\left[ \rho _{\tau _{k}}\left( \varepsilon _{i}-b_{k}-\frac{\nu _{k} ^{**}+X_{i}^{T}\mu ^{**}}{\sqrt{n}}\right) \left( \frac{1}{\widehat{\pi _{i}}}-\frac{1}{\pi _{i}}\right) \right] ,\\&I_{3}=\sum _{k=1}^K\sum _{i=1}^nV_{i}\left[ \rho _{\tau _{k}}(\varepsilon _{i}-b_{k})\left( \frac{1}{\widehat{\pi _{i}}}-\frac{1}{\pi _{i}}\right) \right] . \end{aligned}$$

Considering the fact \(max_{1\le i \le n}|\hat{\pi _{i}}-\pi _{i}|=O_{p}(h^q+\sqrt{\log n/nh})=O_{p}(d_{n})\), we can see that

$$\begin{aligned} I_{2}\!-\!I_{3}&=\sum _{k=1}^K\sum _{i=1}^nV_{i}\left[ \!\rho _{\tau _{k}}\left( \!\varepsilon _{i}-b_{k}-\frac{\nu _{k} ^{**}+X_{i}^{T}\mu ^{**}}{\sqrt{n}}\right) -\rho _{\tau _{k}}(\varepsilon _{i}-b_{k})\!\right] \left[ \left( \frac{1}{\widehat{\pi _{i}}}-\frac{1}{\pi _{i}}\right) \!\right] \\&=-\sum _{k=1}^K\sum _{i=1}^nV_{i}\left[ \!\rho _{\tau _{k}}\left( \!\varepsilon _{i}-b_{k}-\frac{\nu _{k} ^{**}+X_{i}^{T}\mu ^{**}}{\sqrt{n}}\right) \!-\rho _{\tau _{k}}(\varepsilon _{i}-b_{k})\!\right] \left[ \!\frac{(\hat{\pi _{i}}-\pi _{i})}{\pi _{i}^2}\!\right] \\&\quad \ +O_{p}(\sqrt{n}d_{n}^2). \end{aligned}$$

Recall the definition of \(\widehat{\pi }(\cdot )\), we have

$$\begin{aligned} \widehat{\pi }(y)-\pi (y)&=\frac{\sum _{j=1}^n(V_{j}-\pi _{j})L_{h}(Y_{j}-y)}{\sum _{j=1}^nL_{h}(Y_{j}-y)}+\frac{\sum _{j=1}^n(\pi _{j}-\pi (y))L_{h}(Y_{j}-y)}{\sum _{j=1}^nL_{h}(Y_{j}-y)}\\&=\frac{1}{nhf_{Y}(y)}\sum _{j=1}^n(V_{j}-\pi _{j})L_{h}(Y_{j}-y)+O_{p}(h^q)+o_{p}(n^{-1/2}). \end{aligned}$$

Therefore,

$$\begin{aligned} I_{2}\!-\!I_{3}&= -\sum _{k=1}^K\sum _{i=1}^nV_{i}\Bigg [\rho _{\tau _{k}}\Big (\varepsilon _{i}-b_{k}-\frac{\nu _{k} ^{**}+X_{i}^{T}\mu ^{**}}{\sqrt{n}}\Big )\nonumber \\&-\rho _{\tau _{k}}(\varepsilon _{i}-b_{k})\Bigg ]\Bigg [\frac{\sum _{j=1}^n(V_{j}-\pi _{j})L_{h}(Y_{j}-Y_{i})}{nhf_{Y}(Y_{i})\pi _{i}^2}+O_{p}(h^q)\nonumber \\&+o_{p}\left( n^{-\frac{1}{2}}\right) \Bigg ]+O_{p}(\sqrt{n}d_{n}^2)\nonumber \\&= -\sum _{k=1}^K\sum _{i=1}^nV_{i}\left[ \rho _{\tau _{k}}\left( \varepsilon _{i}-b_{k}-\frac{\nu _{k} ^{**}+X_{i}^{T}\mu ^{**}}{\sqrt{n}}\right) -\rho _{\tau _{k}}(\varepsilon _{i}-b_{k})\right] \nonumber \\&\frac{\sum _{j=1}^n(V_{j}-\pi _{j})L_{h}(Y_{j}-Y_{i})}{nhf_{Y}(Y_{i})\pi _{i}^2}+o_{p}(1)\nonumber \\&= -\sum _{k=1}^K\sum _{i=1}^nV_{i}\frac{\nu _{k} ^{**}+X_{i}^{T}\mu ^{**}}{\sqrt{n}}[I(\varepsilon _{i}<b_{k})-\tau _{k}]\nonumber \\&\frac{\sum _{j=1}^n(V_{j}-\pi _{j})L_{h}(Y_{j}-Y_{i})}{nhf_{Y}(Y_{i})\pi _{i}^2}+o_{p}(1)\nonumber \\&= -\sum _{k=1}^K\sum _{i=1}^n\sum _{j=1}^nV_{i}\frac{X_{i}^{T}\mu ^{**}}{\sqrt{n}}[I(\varepsilon _{i}<b_{k})-\tau _{k}]\frac{(V_{j}-\pi _{j})L_{h}(Y_{j}-Y_{i})}{nhf_{Y}(Y_{i})\pi _{i}^2}\nonumber \\&-\sum _{k=1}^K\sum _{i=1}^n\sum _{j=1}^nV_{i}\frac{\nu _{k} ^{**}}{\sqrt{n}}[I(\varepsilon _{i}\!<\!b_{k})\!-\!\tau _{k}]\frac{(V_{j}\!-\!\pi _{j})L_{h}(Y_{j}\!-\!Y_{i})}{nhf_{Y}(Y_{i})\pi _{i}^2}\!+\!o_{p}(1).\qquad \quad \ \end{aligned}$$
(5.2)

Furthermore,

$$\begin{aligned}&\sum _{k=1}^K\sum _{j=1}^n\sum _{i=1}^nV_{i}[I(\varepsilon _{i}<b_{k})-\tau _{k}]\frac{(V_{j}-\pi _{j})L_{h}(Y_{j}-Y_{i})}{n^{\frac{3}{2}}hf_{Y}(Y_{i})\pi _{i}^2}X_{i}^{T}\nonumber \\&\quad \ =\sum _{i=1}^n\sum _{j=1}^n(V_{i}-\pi _{i})\sum _{k=1}^K[I(\varepsilon _{i}<b_{k})-\tau _{k}]\frac{(V_{j}-\pi _{j})L_{h}(Y_{j}-Y_{i})}{n^{\frac{3}{2}}hf_{Y}(Y_{i})\pi _{i}^2}X_{i}^{T}\nonumber \\&\ \qquad +\sum _{i=1}^n\sum _{j=1}^n\sum _{k=1}^K[I(\varepsilon _{i}<b_{k})-\tau _{k}]\frac{(V_{j}-\pi _{j})L_{h}(Y_{j}-Y_{i})}{n^{\frac{3}{2}}hf_{Y}(Y_{i})\pi _{i}}X_{i}^{T}. \end{aligned}$$
(5.3)

The first term of (5.3) can be rewritten as

$$\begin{aligned}&\sum _{i=1}^n\sum _{k=1}^K[I(\varepsilon _{i}<b_{k})-\tau _{k}]\frac{(V_{i}-\pi _{i})^2L(0)}{n^{\frac{3}{2}}hf_{Y}(Y_{i})\pi _{i}^2}X_{i}^{T} +\sum _{i\ne j}(V_{i}-\pi _{i})\sum _{k=1}^K[I(\varepsilon _{i}<b_{k})-\tau _{k}]\\&\ \ \qquad \frac{(V_{j}-\pi _{j})L_{h}(Y_{j}-Y_{i})}{n^{\frac{3}{2}}hf_{Y}(Y_{i})\pi _{i}^2}X_{i}^{T}\\&\quad =O_{p}\left( \frac{1}{\sqrt{n}h}\right) +O_{p}\left( \frac{1}{\sqrt{nh}}\right) =o_{p}(1). \end{aligned}$$

The second term of (5.3) is

$$\begin{aligned}&\sum _{i=1}^n\sum _{j=1}^n\sum _{k=1}^K[I(\varepsilon _{i}<b_{k})-\tau _{k}]\frac{(V_{j}-\pi _{j})L_{h}(Y_{j}-Y_{i})}{n^{\frac{3}{2}}hf_{Y}(Y_{i})\pi _{i}}X_{i}^{T}\\&\quad \ =\frac{1}{\sqrt{n}}\sum _{j=1}^n\frac{(V_{j}-\pi _{j})}{\pi _{j}}E\left[ X_{j}^{T}\sum _{k=1}^K(I(\varepsilon _{j}<b_{k})-\tau _{k})|Y_{j}\right] +o_{p}(1). \end{aligned}$$

In additon, the second term of (5.2) can be rewritten as

$$\begin{aligned}&\sum _{k=1}^K\sum _{i=1}^n\sum _{j=1}^nV_{i}[I(\varepsilon _{i}<b_{k})-\tau _{k}]\frac{(V_{j}-\pi _{j})L_{h}(Y_{j}-Y_{i})}{n^{\frac{3}{2}}hf_{Y}(Y_{i})\pi _{i}^2}\nu _{k} ^{**}\\&\quad \ =\sum _{k=1}^K\sum _{i=1}^n\sum _{j=1}^n(V_{i}-\pi _{i})[I(\varepsilon _{i}<b_{k})-\tau _{k}]\frac{(V_{j}-\pi _{j})L_{h}(Y_{j}-Y_{i})}{n^{\frac{3}{2}}hf_{Y}(Y_{i})\pi _{i}^2}\nu _{k} ^{**}\\&\quad \ \quad +\sum _{k=1}^K\sum _{i=1}^n\sum _{j=1}^n[I(\varepsilon _{i}<b_{k})-\tau _{k}]\frac{(V_{j}-\pi _{j})L_{h}(Y_{j}-Y_{i})}{n^{\frac{3}{2}}hf_{Y}(Y_{i})\pi _{i}}\nu _{k} ^{**}\\&\quad \ =\sum _{k=1}^K\frac{1}{\sqrt{n}}\sum _{j=1}^n\frac{(V_{j}-\pi _{j})}{\pi _{j}}E[(I(\varepsilon _{j}<b_{k})-\tau _{k})|Y_{j}]\nu _{k} ^{**}+o_{p}(1). \end{aligned}$$

So, we have

$$\begin{aligned} L_{n}(\widehat{\pi },\theta ^{**})&=\frac{1}{2}\mu ^{**T}\left\{ \sum _{k=1}^KE_{X}[f(b_{k}|X)XX^{T}]\right\} \mu ^{**}+\Psi _{nk}\mu ^{**}+\frac{1}{2}\sum _{k=1}^Kg_{k}\nu _{k} ^{**2}\\&\quad \ +\sum _{k=1}^K\Phi _{nk}\nu _{k} ^{**}+o_{p}(1), \end{aligned}$$

where

$$\begin{aligned} \Psi _{nk}&=\left\{ \frac{1}{\sqrt{n}}\sum _{i=1}^n\frac{V_{i}}{\pi _{i}}X_{i}^{T}\sum _{k=1}^K[I(\varepsilon _{i}\le b_{k})-\tau _{k}]\right. \\&\qquad \ \left. -\frac{1}{\sqrt{n}}\sum _{i=1}^n\frac{(V_{i}-\pi _{i})}{\pi _{i}}E\left[ X_{i}^{T}\sum _{k=1}^K(I(\varepsilon _{i}<b_{k})-\tau _{k})|Y_{i}\right] \right\} ,\\ \Phi _{nk}&=\frac{1}{\sqrt{n}}\sum _{i=1}^n\frac{V_{i}}{\pi _{i}}[I(\varepsilon _{i}\le b_{k})-\tau _{k}]-\frac{1}{\sqrt{n}}\sum _{i=1}^n\frac{(V_{i}-\pi _{i})}{\pi _{i}}E[(I(\varepsilon _{i}<b_{k})-\tau _{k})|Y_{i}]. \end{aligned}$$

By the central limit theorem \(\Phi _{nk}\) converge in distribution to \(z_{k}{^\prime }\), where \(z_{k}{^\prime }\) is a normal distribution with mean 0. \(\Psi _{nk}\) converge in distribution to \(W_{2}\), where \(W_{2}\) is a normal distribution with mean \(\mathbf 0 \) and covariance \(\Sigma _{2}.\)

Here

$$\begin{aligned} \Sigma _{2}&=cov\left( \frac{V_{i}}{\pi _{i}}X_{i}^{T}\sum _{k=1}^K[I(\varepsilon _{i}\le b_{k})-\tau _{k}])\right. \nonumber \\&\quad \ \left. -\frac{(V_{i}-\pi _{i})}{\pi _{i}}E\left[ X_{i}^{T}\sum _{k=1}^K(I(\varepsilon _{i}<b_{k})-\tau _{k})|Y_{i}\right] \right) \nonumber \\&=E\left( \frac{1}{\pi (Y)}XX^{T}\left[ \sum _{k=1}^K(I(\varepsilon <b_{k})-\tau _{k})\right] ^2\right) \nonumber \\&\quad \ -E\left( \frac{1-\pi (Y)}{\pi (Y)}E\left[ X\sum _{k=1}^K(I(\varepsilon <b_{k})-\tau _{k})|Y\right] ^{\bigotimes 2}\right) . \end{aligned}$$
(5.4)

Hence, we have

$$\begin{aligned}&L_{n}(\widehat{\pi },\theta ^{**})\rightarrow _{d}\frac{1}{2}\mu ^{**T}C\mu ^{**}+W_{2}^{T}\mu ^{**}+\frac{1}{2}\sum _{k=1}^Kg_{k}\nu _{k} ^{**2}+\sum _{k=1}^K+z^{'}_{k}\nu _{k} ^{**}. \end{aligned}$$

By the same way to Knight (1998) and Koenker (2005), we have

$$\begin{aligned} \mu ^{**}\rightarrow _{d}N(0,C^{-1}\Sigma _{2}C^{-1}), \end{aligned}$$

where \(\Sigma _{2}\) is defined in (5.4). Theorem is as claimed. \(\square \)

Proof of Theorem 2.4

Since the proof is similar to Theorem 2.2, we omit it here. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Liu, H. Penalized weighted composite quantile estimators with missing covariates . Stat Papers 57, 69–88 (2016). https://doi.org/10.1007/s00362-014-0642-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-014-0642-2

Keywords

Navigation