Skip to main content
Log in

Estimation and inference of combining quantile and least-square regressions with missing data

  • Published:
Journal of the Korean Statistical Society Aims and scope Submit manuscript

Abstract

In this paper, we consider how to incorporate quantile information to improve estimator efficiency for regression model with missing covariates. We combine the quantile information with least-squares normal equations and construct an unbiased estimating equations (EEs). The lack of smoothness of the objective EEs is overcome by replacing them with smooth approximations. The maximum smoothed empirical likelihood (MSEL) estimators are established based on inverse probability weighted (IPW) smoothed EEs and their asymptotic properties are studied under some regular conditions. Moreover, we develop two novel testing procedures for the underlying model. The finite-sample performance of the proposed methodology is examined by simulation studies. A real example is used to illustrate our methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chen, X., Wan, A. T. K., & Zhou, Y. (2015). Efficient quantile regression analysis with missing observations. Journal of the American Statistical Association, 110, 723–741.

    Article  MathSciNet  Google Scholar 

  • Fan, G. L., Xu, H. X., & Huang, Z. S. (2016). Empirical likelihood for semivarying coefficient model with measurement error in the nonparametric part. AStA. Advances in Statistical Analysis, 100, 21–41.

    Article  MathSciNet  Google Scholar 

  • Guo, J., Tian, M. Z., & Zhu, K. (2012). New efficient and robust estimation in varyingcoefficient models with heteroscedasticity. Statistica Sinica, 22, 1075–1101.

    MathSciNet  MATH  Google Scholar 

  • Lee, A. J., & Scott, A. J. (1986). Ultrasound in ante-natal diagnosis. In R. J. Brook, G. C. Arnold, T. H. Hassard, & R. M. Pringle (Eds.), The fascination of statistics (pp. 277–293). New York: Marcel Dekker.

    Google Scholar 

  • Liang, H. (2008). Generalized partially linear models with missing covariates. Journal of Multivariate Analysis, 99, 880–895.

    Article  MathSciNet  Google Scholar 

  • Little, R. J. A., & Rubin, D. B. (2002). Statistical analysis with missing data. (2nd ed.). New York: Wiley.

    Book  Google Scholar 

  • Ning, Z. J., & Tang, L. J. (2014). Estimation and test procedures for composite quantile regression with covariates missing at random. Statistics & Probability Letters, 95, 15–25.

    Article  MathSciNet  Google Scholar 

  • Owen, A. B. (1990). Empirical likelihood ratio confidence regions. The Annals of Statistics, 18, 90–120.

    Article  MathSciNet  Google Scholar 

  • Qin, J., & Lawless, J. (1994). Empirical likelihood and general estimating equations. The Annals of Statistics, 22, 300–325.

    Article  MathSciNet  Google Scholar 

  • Rao, J. N. K., & Scott, A. J. (1981). The analysis of categorical data from complex sample surveys: chi-squares tests for goodness of fit and independence in two-way tables. Journal of the American Statistical Association, 76, 221–230.

    Article  MathSciNet  Google Scholar 

  • Robins, J. M., Rotnitsky, A., & Zhao, L. P. (1994). Estimation of regression coefficients when some regressors are not always observed. Journal of the American Statistical Association, 89, 846–866.

    Article  MathSciNet  Google Scholar 

  • Rubin, D. B. (1976). Inference and missing data. Biometrika, 63, 581–592.

    Article  MathSciNet  Google Scholar 

  • Sherwood, B., Wang, L., & Zhou, X. H. (2013). Weighted quantile regression for analyzing health care cost data with missing covariates. Statistics in Medicine, 32, 4967–4979.

    Article  MathSciNet  Google Scholar 

  • Sun, J., & Sun, Q. H. (2015). An improved and efficient estimation method for varying-coefficient model with missing covariates. Statistics & Probability Letters, 107, 296–303.

    Article  MathSciNet  Google Scholar 

  • Tsiatis, A. A. (2006). Semiparametric theory and missing data. New York: Springer.

    MATH  Google Scholar 

  • Wong, H., Guo, S. J., Chen, M., et al. (2009). On locally weighted estimation and hypothesis testing on varying coefficient models. Journal of Statistical Planning and Inference, 139, 2933–2951.

    Article  MathSciNet  Google Scholar 

  • Xue, L. G. (2009a). Empirical likelihood confidence intervals for response mean with data missing at random. Scandinavian Journal of Statistics, 36, 671–685.

    Article  MathSciNet  Google Scholar 

  • Xue, L. G. (2009b). Empirical likelihood for linear models with missing responses. Journal of Multivariate Analysis, 100, 1353–1366.

    Article  MathSciNet  Google Scholar 

  • Yang, H., & Liu, H. L. (2016). Penalized weighted composite quantile estimators with missing Covariates. Statistical Papers, 57, 69–88.

    Article  MathSciNet  Google Scholar 

  • Zhou, Y., Alan, T. K., & Wan, Y. Y. (2011). Combining least-squares and quantile regressions. Journal of Statistical Planning and Inference, 141, 3814–3828.

    Article  MathSciNet  Google Scholar 

  • Zhao, M., Wang, Y., & Zhou, Y. (2016). Accelerated failure time model with quantile information. Annals of the Institute of Statistical Mathematics, 68, 1001–1024.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linjun Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, L., Zheng, S. & Zhou, Z. Estimation and inference of combining quantile and least-square regressions with missing data. J. Korean Stat. Soc. 47, 77–89 (2018). https://doi.org/10.1016/j.jkss.2017.09.005

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.jkss.2017.09.005

AMS 2000 subject classifications

Keywords

Navigation