Skip to main content
Log in

RETRACTED ARTICLE: A robust vector field correction method via a mixture statistical model of PIV signal

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

This article was retracted on 23 June 2016

Abstract

Outlier (spurious vector) is a common problem in practical velocity field measurement using particle image velocimetry technology (PIV), and it should be validated and replaced by a reliable value. One of the most challenging problems is to correctly label the outliers under the circumstance that measurement noise exists or the flow becomes turbulent. Moreover, the outlier’s cluster occurrence makes it difficult to pick out all the outliers. Most of current methods validate and correct the outliers using local statistical models in a single pass. In this work, a vector field correction (VFC) method is proposed directly from a mixture statistical model of PIV signal. Actually, this problem is formulated as a maximum a posteriori (MAP) estimation of a Bayesian model with hidden/latent variables, labeling the outliers in the original field. The solution of this MAP estimation, i.e., the outlier set and the restored flow field, is optimized iteratively using an expectation–maximization algorithm. We illustrated this VFC method on two kinds of synthetic velocity fields and two kinds of experimental data and demonstrated that it is robust to a very large number of outliers (even up to 60 %). Besides, the proposed VFC method has high accuracy and excellent compatibility for clustered outliers, compared with the state-of-the-art methods. Our VFC algorithm is computationally efficient, and corresponding Matlab code is provided for others to use it. In addition, our approach is general and can be seamlessly extended to three-dimensional-three-component (3D3C) PIV data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. http://yong-lee.weebly.com/.

References

  • Adrian RJ (1991) Particle-imaging techniques for experimental fluid mechanics. Annu Rev Fluid Mech 23(1):261–304

    Article  Google Scholar 

  • Afanasyev Y, Demirov E (2005) A variational filtration and interpolation technique for PIV employing fluid dynamical constraints. Exp Fluids 39(5):828–835

    Article  Google Scholar 

  • Bishop CM (2006) Pattern recognition and machine learning. Springer, Berlin

    MATH  Google Scholar 

  • Creutin J, Muste M, Bradley A, Kim S, Kruger A (2003) River gauging using PIV techniques: a proof of concept experiment on the Iowa River. J Hydrol 277(3):182–194

    Article  Google Scholar 

  • de Baar JH, Percin M, Dwight RP, van Oudheusden BW, Bijl H (2014) Kriging regression of PIV data using a local error estimate. Exp Fluids 55(1):1–13

    Google Scholar 

  • Deen NG, Willems P, van Sint Annaland M, Kuipers J, Lammertink RG, Kemperman AJ, Wessling M, van der Meer WG (2010) On image pre-processing for PIV of single-and two-phase flows over reflecting objects. Exp Fluids 49(2):525–530

    Article  Google Scholar 

  • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc B 39:1–38

    MathSciNet  MATH  Google Scholar 

  • Elsinga GE, Scarano F, Wieneke B, van Oudheusden BW (2006) Tomographic particle image velocimetry. Exp Fluids 41(6):933–947

    Article  Google Scholar 

  • Foucaut J, Carlier J, Stanislas M (2000) Post-processing of PIV records to allow derivative computation. In: Proceedings of 10th international symposium on the applications of laser techniques to fluid mechanics, vol 16. Lisbon, Portugal

  • Garcia D (2010) Robust smoothing of gridded data in one and higher dimensions with missing values. Comput Stat Data Anal 54(4):1167–1178

    Article  MathSciNet  MATH  Google Scholar 

  • Garcia D (2011) A fast all-in-one method for automated post-processing of PIV data. Exp Fluids 50(5):1247–1259

    Article  Google Scholar 

  • Griffin J, Schultz T, Holman R, Ukeiley LS, Cattafesta LN III (2010) Application of multivariate outlier detection to fluid velocity measurements. Exp Fluids 49(1):305–317

    Article  Google Scholar 

  • Gunes H, Rist U (2007) Spatial resolution enhancement/smoothing of stereo–particle-image-velocimetry data using proper-orthogonal-decomposition—based and Kriging interpolation methods. Phys Fluids 19(6):064,101

    Article  MATH  Google Scholar 

  • Hart DP (2000) PIV error correction. Exp Fluids 29(1):13–22

    Article  Google Scholar 

  • Huang H, Dabiri D, Gharib M (1997) On errors of digital particle image velocimetry. Meas Sci Technol 8(12):1427

    Article  Google Scholar 

  • Liang D, Jiang C, Li Y (2003) Cellular neural network to detect spurious vectors in PIV data. Exp Fluids 34(1):52–62

    Article  Google Scholar 

  • Liu Z, Jia L, Zheng Y, Zhang Q (2008) Flow-adaptive data validation scheme in PIV. Chem Eng Sci 63(1):1–11

    Article  Google Scholar 

  • Ma J, Zhao J, Tian J, Yuille AL, Tu Z (2014) Robust point matching via vector field consensus. IEEE Trans Image Process 23(4):1706–1721

    Article  MathSciNet  Google Scholar 

  • Micchelli CA, Pontil M (2005) On learning vector-valued functions. Neural Comput 17(1):177–204

    Article  MathSciNet  MATH  Google Scholar 

  • Okamoto K (2003) PIV challenge. http://www.pivchallenge.org/

  • Pereira F, Stüer H, Graff EC, Gharib M (2006) Two-frame 3D particle tracking. Meas Sci Technol 17(7):1680

    Article  Google Scholar 

  • Petermeier H, Kowalczyk W, Delgado A, Denz C, Holtmann F (2007) Detection of microorganismic flows by linear and nonlinear optical methods and automatic correction of erroneous images artefacts and moving boundaries in image generating methods by a neuronumerical hybrid implementing the taylors hypothesis as a priori knowledge. Exp Fluids 42(4):611–623

    Article  Google Scholar 

  • Pope SB (2000) Turbulent flows. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Pun CS, Susanto A, Dabiri D (2007) Mode-ratio bootstrapping method for PIV outlier correction. Meas Sci Technol 18(11):3511

    Article  Google Scholar 

  • Raben SG, Charonko JJ, Vlachos PP (2012) Adaptive gappy proper orthogonal decomposition for particle image velocimetry data reconstruction. Meas Sci Technol 23(2):025,303

    Article  Google Scholar 

  • Raffel M, Willert C, Wereley S, Kompenhans J (2007) Particle image velocimetry: a practical guide. Springer, Berlin

    Google Scholar 

  • Schroeder A, Willert CE (2008) Particle image velocimetry: new developments and recent applications, vol 112. Springer Science & Business Media, Berlin

    Google Scholar 

  • Sciacchitano A, Wieneke B, Scarano F (2013) PIV uncertainty quantification by image matching. Meas Sci Technol 24(4):045,302

    Article  Google Scholar 

  • Shan F, Fujishiro A, Tsuneyoshi T, Tsuji Y (2014) Effects of flow field on the wall mass transfer rate behind a circular orifice in a round pipe. Int J Heat Mass Transf 73:542–550

    Article  Google Scholar 

  • Shinneeb A, Bugg J, Balachandar R (2004) Variable threshold outlier identification in PIV data. Meas Sci Technol 15(9):1722

    Article  Google Scholar 

  • Stanislas M, Okamoto K, Kähler C (2003) Main results of the first international PIV challenge. Meas Sci Technol 14(10):R63

    Article  Google Scholar 

  • Steinbuck JV, Roberts PL, Troy CD, Horner-Devine AR, Simonet F, Uhlman AH, Jaffe JS, Monismith SG, Franks PJ (2010) An autonomous open-ocean stereoscopic PIV profiler. J Atmos Ocean Technol 27(8):1362–1380

    Article  Google Scholar 

  • Sugii Y, Nishio S, Okamoto K (2002) In vivo PIV measurement of red blood cell velocity field in microvessels considering mesentery motion. Physiol Meas 23(2):403

    Article  Google Scholar 

  • Vennemann P (2009) JPIV. http://www.jpiv.vennemann-online.de/

  • Vennemann P (2008) Particle image velocimetry for microscale blood flow measurement. Delft University of Technology, TU Delft

    Google Scholar 

  • Vlasenko A, Steele EC, Nimmo-Smith WAM (2015) A physics-enabled flow restoration algorithm for sparse PIV and PTV measurements. Meas Sci Technol 26(6):065,301

    Article  Google Scholar 

  • Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612

    Article  Google Scholar 

  • Wang H, Gao Q, Feng L, Wei R, Wang J (2015) Proper orthogonal decomposition based outlier correction for PIV data. Exp Fluids 56(2):1–15

    Google Scholar 

  • Wereley ST, Meinhart CD (2010) Recent advances in micro-particle image velocimetry. Annu Rev Fluid Mech 42:557–576

    Article  Google Scholar 

  • Westerweel J (1994) Efficient detection of spurious vectors in particle image velocimetry data. Exp Fluids 16(3–4):236–247

    Google Scholar 

  • Westerweel J, Scarano F (2005) Universal outlier detection for PIV data. Exp Fluids 39(6):1096–1100

    Article  Google Scholar 

  • Willert CE, Gharib M (1997) The interaction of spatially modulated vortex pairs with free surfaces. J Fluid Mech 345:227–250

    Article  MathSciNet  Google Scholar 

  • Yuille AL (1990) Generalized deformable models, statistical physics, and matching problems. Neural Comput 2(1):1–24

    Article  MathSciNet  Google Scholar 

  • Zhu Y, Yuan H, Zhang C, Lee C (2013) Image-preprocessing method for near-wall particle image velocimetry (PIV) image interrogation with very large in-plane displacement. Meas Sci Technol 24(12):125,302

    Article  Google Scholar 

Download references

Acknowledgments

We thank the anonymous reviewers for their insightful comments. This work was supported by National Natural Science Foundation of China (Grant Nos. 51327801 and 51475193). The flow fields from Fig. 11a, b and d are courtesy of Dr. Wang (Wang et al. 2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Yang.

Additional information

This article has been retracted by the Editors-in-Chief of the journal on the authors’ initiative. The reasons for the retraction are a technical mistake by the authors and substantial overlap of text with the previous publications Ma J, Zhao J, Tian J, Yuille AL, Tu Z (2014) Robust point matching via vector field consensus. IEEE Trans Image Process 23(4):1706–1721 and Garcia D (2011) A fast all-in-one method for automated post-processing of PIV data. Exp Fluids 50(5):1247–1259.

An erratum to this article can be found online at http://dx.doi.org/10.1007/s00348-016-2202-0.

Appendix: The derivation of EM algorithm

Appendix: The derivation of EM algorithm

It is very difficult to find the closed-form solution to this minimization problem (Eq. 9). As a typical iterative method, the expectation–maximization framework alternates constructing an upper bound and minimizing this bound, and thus provides a numerical solution. Here, we use Jensen’s inequality to construct the upper bound. \((\mathsf {E}(\varphi (X))\le \varphi (\mathsf {E} (X))\), where \(\varphi\) is a concave function, and \(\mathsf {E}\) is the expectation in probability theory.)

$$\begin{aligned} E(\varvec{\theta })= & {} -\hbox {ln}(p(\mathbf f ))-\sum _{i=1}^N \hbox {ln}\left( \sum _{z_i}p(\mathbf v _i,z_i|\mathbf x _i,\varvec{\theta })\right) \nonumber \\= & {} -\hbox {ln}(p(\mathbf f ))-\sum _{i=1}^N \hbox {ln}\left( \sum _{z_i}\left( p\left( z_i|\mathbf x _i,\mathbf v _i,\varvec{\theta } \right) \cdot \frac{p(\mathbf v _i,z_i|\mathbf x _i, \varvec{\theta })}{p(z_i|\mathbf x _i,\mathbf v _i, \varvec{\theta })}\right) \right) \nonumber \\\le & {} -\hbox {ln}(p(\mathbf f ))-\sum _{i=1}^N \sum _{z_i}\left( p \left( z_i|\mathbf x _i,\mathbf v _i,\varvec{\theta } \right) \cdot \hbox {ln}\left( \frac{p\left( \mathbf v _i,z_i|\mathbf x _i, \varvec{\theta } \right) }{p\left( z_i|\mathbf x _i, \mathbf v _i, \varvec{\theta }\right) } \right) \right) \nonumber \\= & {} -\mathscr {Q}( \varvec{\theta }) \end{aligned}$$
(19)

where \(E(\varvec{\theta })\) is the negative log posterior function and \(\mathscr {Q}( \varvec{\theta })\) denotes the complete-data log posterior. We just change the position of sum operation and ln function to make the formula tractable. When a certain condition has been reached, the inequality will become equal. The condition is

$$\begin{aligned} \frac{p(\mathbf v _i,z_i|\mathbf x _i,\varvec{\theta })}{p(z_i|\mathbf x _i,\mathbf v _i,\varvec{\theta })} = \hbox {const for}\, z_i=1\, \hbox {and}\,z_i=0 \end{aligned}$$
(20)

i.e.,

$$\begin{aligned} \frac{p(\mathbf v _i,z_i=1|\mathbf x _i, \varvec{\theta })}{p(z_i=1|\mathbf x _i, \mathbf v _i,\varvec{\theta })}&= \frac{p(\mathbf v _i,z_i=0|\mathbf x _i, \varvec{\theta })}{p(z_i=0|\mathbf x _i, \mathbf v _i,\varvec{\theta })}\nonumber \\&= \frac{{p(\mathbf v _i,z_i=0|\mathbf x _i,\varvec{\theta })} + p(\mathbf v _i,z_i=1|\mathbf x _i,\varvec{\theta })}{{p(z_i=0|\mathbf x _i,\mathbf v _i,\varvec{\theta })} + {p(z_i=1|\mathbf x _i,\mathbf v _i,\varvec{\theta })}} \nonumber \\&= {p(\mathbf v _i|\mathbf x _i,\varvec{\theta })} \end{aligned}$$
(21)

The expectation step (E-step) result is thus got from this condition. The Eq. 11 is the specific form with probability substitution.

$$\begin{aligned} p(z_i=1|\mathbf x _i,\mathbf v _i,\varvec{\theta }) = \frac{p(\mathbf v _i,z_i=1|\mathbf x _i,\varvec{\theta })}{p(\mathbf v _i|\mathbf x _i,\varvec{\theta })} \end{aligned}$$
(22)

As the \(p(z_i|\mathbf x _i,\mathbf v _i,\varvec{\theta })\) is determined in E-step, the complete-data log posterior should be expressed more precisely with symbol \(\varvec{\theta }^\mathrm{old}\).

$$\begin{aligned} \mathscr {Q}\left( \varvec{\theta },\varvec{\theta }^\mathrm{old}\right)&= \hbox {ln}(p(\mathbf f )) \nonumber \\&+\sum _{i=1}^N \sum _{z_i}\left( p \left( z_i|\mathbf x _i,\mathbf v _i,\varvec{\theta }^\mathrm{old} \right) \cdot \hbox {ln}\left( \frac{p\left( \mathbf v _i,z_i|\mathbf x _i, \varvec{\theta }\right) }{p\left( z_i|\mathbf x _i, \mathbf v _i, \varvec{\theta }^\mathrm{old} \right) } \right) \right) \end{aligned}$$
(23)

The Eq. 10 is the expansion of this equation, and we omit some terms that are independent of \(\varvec{\theta }\). For a complete derivative process, refer to the author’s personal research Web site.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, Y., Yang, H. & Yin, Z. RETRACTED ARTICLE: A robust vector field correction method via a mixture statistical model of PIV signal. Exp Fluids 57, 31 (2016). https://doi.org/10.1007/s00348-016-2115-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-016-2115-y

Mathematics Subject Classification

Navigation