Skip to main content
Log in

Simultaneous measurements of droplet size, flying velocity and transient temperature of in-flight droplets by using a molecular tagging technique

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

In the present study, a molecular tagging technique is introduced to achieve simultaneous measurements of droplet size, flying velocity and transient temperature of in-flight liquid droplets in a spray flow. For the molecular tagging measurements, a pulsed laser is used to “tag” phosphorescent 1-BrNp·Mβ-CD·ROH triplex molecules premixed within liquid droplets. After the same laser excitation pulse, long-lived laser-induced phosphorescence is imaged at two successive times within the phosphorescence lifetime of the tagged phosphorescent triplex molecules. While the sizes of the droplets are determined quantitatively based on the acquired droplet images with a precalibrated scale ratio between the image plane and the object plane, the displacement vectors of the in-flight droplets between the two image acquisitions are used to estimate the flying velocities of the droplets. The simultaneous measurements of the transient temperatures of the in-flight droplets are achieved by taking advantage of the temperature dependence of phosphorescence lifetime, which is estimated from the intensity ratio of the acquired phosphorescence image pair of the inflight droplets. The feasibility and implementation of the molecular tagging technique are demonstrated by conducting simultaneous measurements of droplet size, flying velocity and transient temperature of micro-sized water droplets exhausted from a piezoelectric droplet generator into ambient air at different test conditions in order to characterize the dynamic and thermodynamic behaviors of the micro-sized in-flight droplets. The unsteady heat transfer process between the in-flight droplets and the ambient air is also analyzed theoretically by using a lumped capacitance method to predict the temperature changes of the in-flight water droplets along their flight trajectories. The measured temperature data are compared with the theoretical analysis results quantitatively, and the discrepancies between measurement results and the theoretical predictions are found to be within 0.80 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Castanet G, Lavieille P, Lemoine F et al (2002) Energetic budget on an evaporating monodisperse droplet stream using combined optical methods. Int J Heat Mass Transf 45:5053–5067. doi:10.1016/S0017-9310(02)00204-1

    Article  Google Scholar 

  • Coppeta J, Rogers C (1998) Dual emission laser induced fluorescence for direct planar scalar behavior measurements. Exp Fluids 25:1–15. doi:10.1007/s003480050202

    Article  Google Scholar 

  • Ferraudi GJ (1988) Elements of inorganic photochemistry. Wiley-Interscience, New York

    Google Scholar 

  • Gendrich C, Koochesfahani M, Nocera D (1997) Molecular tagging velocimetry and other novel applications of a new phosphorescent supramolecule. Exp Fluids 23:361–372

    Article  Google Scholar 

  • González JE, Black WZ (1997) Study of droplet sprays prior to impact on a heated horizontal surface. J Heat Transf 119:279. doi:10.1115/1.2824221

    Article  Google Scholar 

  • Hall DD, Mudawar I (1995) Experimental and numerical study of quenching complex-shaped metallic alloys with multiple, overlapping sprays. Int J Heat Mass Transf 38:1201–1216. doi:10.1016/0017-9310(94)00244-P

    Article  Google Scholar 

  • Hartmann W, Gray M, Ponce A (1996) Substrate induced phosphorescence from cyclodextrin·lumophore host-guest complexes. Inorg Chim Acta 234:239–248

    Article  Google Scholar 

  • Hopkins RJ, Symes R, Sayer RM, Reid JP (2003) Determination of the size and composition of multicomponent ethanol/water droplets by cavity-enhanced Raman scattering. Chem Phys Lett 380:665–672. doi:10.1016/j.cplett.2003.09.048

    Article  Google Scholar 

  • Hu H, Huang D (2009) Simultaneous measurements of droplet size and transient temperature within surface water droplets. AIAA J 47:813–820

    Article  Google Scholar 

  • Hu H, Jin Z (2010) An icing physics study by using lifetime-based molecular tagging thermometry technique. Int J Multiph Flow 36:672–681

    Article  Google Scholar 

  • Hu H, Koochesfahani M (2003) A novel technique for quantitative temperature mapping in liquid by measuring the lifetime of laser induced phosphorescence. J Vis 6:143–153

    Article  Google Scholar 

  • Hu H, Koochesfahani MM (2006) Molecular tagging velocimetry and thermometry and its application to the wake of a heated circular cylinder. Meas Sci Technol 17:1269–1281. doi:10.1088/0957-0233/17/6/S06

    Article  Google Scholar 

  • Hu H, Koochesfahani MM (2011) Thermal effects on the wake of a heated circular cylinder operating in mixed convection regime. J Fluid Mech 685:235–270. doi:10.1017/jfm.2011.313

    Article  MATH  Google Scholar 

  • Hu H, Saga T, Kobayashi T, Okamoto T, Taniguchi N (1998) Evaluation of cross correlation method by using PIV standard images. J Vis 1(1):87–94

    Article  Google Scholar 

  • Hu H, Koochesfahani M, Lum C (2006) Molecular tagging thermometry with adjustable temperature sensitivity. Exp Fluids 40:753–763

    Article  Google Scholar 

  • Hu H, Jin Z, Koochesfahani M, Nocera D (2010) Experimental investigations of micro-scale flow and heat transfer phenomena by using molecular tagging techniques. Meas Sci Technol 21:085401 (14 pp)

    Article  Google Scholar 

  • Incropera F, DeWitt D (1996) Introduction to heat transfer. Wiley, New York

    Google Scholar 

  • Kim HJ, Kihm KD, Allen JS (2003) Examination of ratiometric laser induced fluorescence thermometry for microscale spatial measurement resolution. Int J Heat Mass Transf 46:3967–3974. doi:10.1016/S0017-9310(03)00243-6

    Article  Google Scholar 

  • Lavieille P, Lemoine F, Lavergne G, Lebouché M (2001) Evaporating and combusting droplet temperature measurements using two-color laser-induced fluorescence. Exp Fluids 31:45–55. doi:10.1007/s003480000257

    Article  Google Scholar 

  • Lemoine F, Castanet G (2013) Temperature and chemical composition of droplets by optical measurement techniques: a state-of-the-art review. Exp Fluids 54(7):1572

    Article  Google Scholar 

  • Mochizuki T, Nozaki T, Mori YH, Kaji N (1999) Heat transfer to liquid drops passing through an immiscible liquid medium between tilted parallel-plate electrodes. Int J Heat Mass Transf 42:3113–3129. doi:10.1016/S0017-9310(98)00381-0

    Article  Google Scholar 

  • Müller T, Grünefeld G, Beushausen V (2000) High-precision measurement of the temperature of methanol and ethanol droplets using spontaneous Raman scattering. Appl Phys B 70(1):155–158

    Article  Google Scholar 

  • Nozaki T, Mochizuki T, Kaji N, Mori YH (1995) Application of liquid-crystal thermometry to drop temperature measurements. Exp Fluids 18:137–144. doi:10.1007/BF00230257

    Article  Google Scholar 

  • Omrane A, Juhlin G, Ossler F, Aldén M (2004a) Temperature measurements of single droplets by use of laser-induced phosphorescence. Appl Opt 43:3523–3529

    Article  Google Scholar 

  • Omrane A, Santesson S, Alden M, Nilsson S (2004b) Laser techniques in acoustically levitated micro droplets. Lab Chip 4:287–291. doi:10.1039/b402440k

    Article  Google Scholar 

  • Ramamurthy V, Schanze KS (1998) Organic and inorganic photochemistry. Mol Supramol Photochem viii:355

    Google Scholar 

  • Richards CD, Richards RF, Boltzman S (1998) Transient temperature measurements in a convectively cooled droplet. Exp Fluids 25(5):392–400

    Article  Google Scholar 

  • Saga T, Kobayashi T, Segawa S, Hu H (2001) Development and evaluation of an improved correlation based PTV method. J Vis 4:29–37. doi:10.1007/BF03182453

    Article  Google Scholar 

  • Salazar VM, González JE, Rivera LA (2004) Measurement of temperatures on in-flight water droplets by laser induced fluorescence thermometry. J Heat Transf 126:279. doi:10.1115/1.1667527

    Article  Google Scholar 

  • Schulz C, Sick V (2005) Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems. Prog Energy Combust Sci 31:75–121. doi:10.1016/j.pecs.2004.08.002

    Article  Google Scholar 

  • Schweiger G (1990) Raman scattering on single aerosol particles and on flowing aerosols: a review. J Aerosol Sci 21:483–509. doi:10.1016/0021-8502(90)90126-I

    Article  Google Scholar 

  • Tuckermann R, Bauerecker S, Cammenga HK (2005) IR-thermography of evaporating acoustically levitated drops. Int J Thermophys 26:1583–1594. doi:10.1007/s10765-005-8105-6

    Article  Google Scholar 

  • Van Beeck JP, Riethmuller ML (1995) Nonintrusive measurements of temperature and size of single falling raindrops. Appl Opt 34:1633–1639. doi:10.1364/AO.34.001633

    Article  Google Scholar 

  • Van Beeck JP, Giannoulis D, Zimmer L, Riethmuller ML (1999) Global rainbow thermometry for droplet-temperature measurement. Opt Lett 24:1696–1698. doi:10.1364/OL.24.001696

    Article  Google Scholar 

  • Vetrano MR, Gauthier S, van Beeck J et al (2005) Characterization of a non-isothermal water spray by global rainbow thermometry. Exp Fluids 40:15–22. doi:10.1007/s00348-005-0042-4

    Article  Google Scholar 

  • Whitaker S (1972) Forced convection heat transfer correlations for flow in pipes, past flat plates, single cylinders, single spheres, and for flow in packed beds and tube bundles. AIChE J 18:361–371. doi:10.1002/aic.690180219

    Article  Google Scholar 

  • Wilms J, Gréhan G, Lavergne G (2008) Global rainbow refractometry with a selective imaging method. Part Part Syst Charact 25:39–48. doi:10.1002/ppsc.200700006

    Article  Google Scholar 

  • Wulsten E, Lee G (2008) Surface temperature of acoustically levitated water microdroplets measured using infra-red thermography. Chem Eng Sci 63:5420–5424. doi:10.1016/j.ces.2008.07.020

    Article  Google Scholar 

  • Zhang Y, Zhang G, Xu M, Wang J (2013) Droplet temperature measurement based on 2-color laser-induced exciplex fluorescence. Exp Fluids 54:1583. doi:10.1007/s00348-013-1583-6

    Article  Google Scholar 

Download references

Acknowledgments

The authors want to thank Dr. M.M. Koochesfahani of Michigan State University for the technical help pertinent to the present study. The funding support from National Science Foundation program under award numbers of CBET-1064196 and CBET-1435590 and Iowa Regents Innovation Fund (RIF) program is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Chen, F. & Hu, H. Simultaneous measurements of droplet size, flying velocity and transient temperature of in-flight droplets by using a molecular tagging technique. Exp Fluids 56, 194 (2015). https://doi.org/10.1007/s00348-015-2063-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-015-2063-y

Keywords

Navigation