Skip to main content
Log in

Molecular tagging techniques and their applications to the study of complex thermal flow phenomena

  • Review Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

This review article reports the recent progress in the development of a new group of molecule-based flow diagnostic techniques, which include molecular tagging velocimetry (MTV) and molecular tagging thermometry (MTT), for both qualitative flow visualization of thermally induced flow structures and quantitative whole-field measurements of flow velocity and temperature distributions. The MTV and MTT techniques can also be easily combined to result in a so-called molecular tagging velocimetry and thermometry (MTV&T) technique, which is capble of achieving simultaneous measurements of flow velocity and temperature distribution in fluid flows. Instead of using tiny particles, the molecular tagging techniques (MTV, MTT, and MTV&T) use phosphorescent molecules, which can be turned into long-lasting glowing marks upon excitation by photons of appropriate wavelength, as the tracers for the flow velocity and temperature measurements. The unique attraction and implementation of the molecular tagging techniques are demonstrated by three application examples, which include: (1) to quantify the unsteady heat transfer process from a heated cylinder to the surrounding fluid flow in order to examine the thermal effects on the wake instabilities behind the heated cylinder operating in mixed and forced heat convection regimes, (2) to reveal the time evolution of unsteady heat transfer and phase changing process inside micro-sized, icing water droplets in order to elucidate the underlying physics pertinent to aircraft icing phenomena, and (3) to achieve simultaneous droplet size, velocity and temperature measurements of “in-flight” droplets to characterize the dynamic and thermodynamic behaviors of flying droplets in spray flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Adrian, R.J.: Twenty years of particle image velocimetry. Exp. Fluids 39, 159–169 (2005)

    Article  Google Scholar 

  2. Ainsworth, R.W., Thorpe, S.J., Manners, R.J.: A new approach to flow-field measurement—a view of Doppler global velocimetry techniques. Int. J. Heat Fluid Flow 18, 116–130 (1997)

    Article  Google Scholar 

  3. Komine, H., Brosnan, S.: Instantaneous, three-component, Doppler global velocimetry. In: Laser Anemometry—Advances and Applications 1991; Proceedings of the 4th International Conference, vol. 1 (A93–23776 08–35), pp. 273–277. (1991)

  4. Elliott, G., Crafton, J., Baust, H.: Evaluation and optimization of a multi-component planar Doppler velocimetry system. 43rd AIAA Aerospace Sciences Meeting and Exhibit 10–13 January 2005, Reno, Nevada. p. AIAA 2005–0035 (2005)

  5. Beutner, T., Elliott, G.: Forebody and leading edge vortex measurements using planar Doppler velocimetry. Meas. Sci. Technol. 12, 378–394 (2001)

    Article  Google Scholar 

  6. Zettner, C., Yoda, M.: Particle velocity field measurements in a near-wall flow using evanescent wave illumination. Exp. Fluids 34, 115–121 (2003)

    Article  Google Scholar 

  7. Jin, S., Huang, P., Park, J., et al.: Near-surface velocimetry using evanescent wave illumination. Exp. Fluids 37, 825–833 (2004)

    Article  Google Scholar 

  8. Devasenathipathy, S., Santiago, J.G., Takehara, K.: Particle tracking techniques for electrokinetic microchannel flows. Anal. Chem. 74, 3704–3713 (2002)

    Article  Google Scholar 

  9. Wang, D., Sigurdson, M., Meinhart, C.D.: Experimental analysis of particle and fluid motion in ac electrokinetics. Exp. Fluids 38, 1–10 (2004)

    Article  Google Scholar 

  10. Hu, H., Jin, Z., Nocera, D.: Experimental investigations of micro-scale flow and heat transfer phenomena by using molecular tagging techniques. Meas. Sci. Technol. 21, 085401 (2010)

    Article  Google Scholar 

  11. Hu, H., Jin, Z.: An icing physics study by using lifetime-based molecular tagging thermometry technique. Int. J. Multiph. Flow 36, 672–681 (2010)

    Article  Google Scholar 

  12. Hu, H., Koochesfahani, M.: A novel method for instantaneous, quantitative measurement of molecular mixing in gaseous flows. Exp. Fluids 33, 202–209 (2002)

    Article  Google Scholar 

  13. Hiller, B., Hanson, R.: Simultaneous planar measurements of velocity and pressure fields in gas flows using laser-induced fluorescence. Appl. Opt. 27, 33–48 (1988)

    Article  Google Scholar 

  14. Sakakibara, J., Adrian, R.J.: Whole field measurement of temperature in water using two-color laser induced fluorescence. Exp. Fluids 26, 7–15 (1999)

    Article  Google Scholar 

  15. Kim, H.J., Kihm, K.D., Allen, J.S.: Examination of ratiometric laser induced fluorescence thermometry for microscale spatial measurement resolution. Int. J. Heat Mass Transf. 46, 3967–3974 (2003)

    Article  Google Scholar 

  16. Coppeta, J., Rogers, C.: Dual emission laser induced fluorescence for direct planar scalar behavior measurements. Exp. Fluids 25, 1–15 (1998)

    Article  Google Scholar 

  17. Lavieille, P., Lemoine, F., Lavergne, G., et al.: Evaporating and combusting droplet temperature measurements using two-color laser-induced fluorescence. Exp. Fluids 31, 45–55 (2001)

    Article  Google Scholar 

  18. Thurber, M., Grisch, F., Hanson, R.: Temperature imaging with single-and dual-wavelength acetone planar laser-induced fluorescence. Opt. Lett. 22, 251–253 (1997)

    Article  Google Scholar 

  19. Hu, H., Koochesfahani, M., Lum, C.: Molecular tagging thermometry with adjustable temperature sensitivity. Exp. Fluids 40, 753–763 (2006)

    Article  Google Scholar 

  20. Omrane, A., Juhlin, G., Ossler, F., et al.: Temperature measurements of single droplets by use of laser-induced phosphorescence. Appl. Opt. 43, 3523–3529 (2004)

    Article  Google Scholar 

  21. Huang, D., Hu, H.: Molecular tagging thermometry for transient temperature mapping within a water droplet. Opt. Lett. 32, 3534–3536 (2007)

    Article  Google Scholar 

  22. Hu, H., Koochesfahani, M.M.: A novel technique for quantitative temperature mapping in liquid by measuring the lifetime of laser induced phosphorescence. J. Vis. 6, 143–153 (2003)

    Article  Google Scholar 

  23. Koochesfahani, M., Nocera, D.: Molecular Tagging Velocimetry. In: Handbook of Experimental Fluid Dynamics, pp. 362–381 (2007)

  24. Gendrich, C., Koochesfahani, M.: A spatial correlation technique for estimating velocity fields using molecular tagging velocimetry (MTV). Exp. Fluids 22, 67–77 (1996)

    Article  Google Scholar 

  25. Stier, B., Koochesfahani, M.: Molecular tagging velocimetry (MTV) measurements in gas phase flows. Exp. Fluids 26, 297–304 (1999)

    Article  Google Scholar 

  26. Hu, H., Koochesfahani, M.: Molecular tagging velocimetry and thermometry and its application to the wake of a heated circular cylinder. Meas. Sci. Technol. 17, 1269–1281 (2006)

    Article  Google Scholar 

  27. Hu, H., Koochesfahani, M.: Thermal effects on the wake of a heated circular cylinder operating in mixed convection regime. J. Fluid Mech. 685, 235–270 (2011)

  28. Hiller, B., Booman, R.A., Hassa, C., et al.: Velocity visualization in gas flows using laser-induced phosphorescence of biacetyl. Rev. Sci. Instrum. 55, 1964 (1984)

    Article  Google Scholar 

  29. Lempert, W., Jiang, N., Sethuram, S., et al.: Molecular tagging velocimetry measurements in supersonic microjets. AIAA J. 40, 1065–1070 (2002)

    Article  Google Scholar 

  30. Lempert, W., Boehm, M., Jiang, N.: Comparison of molecular tagging velocimetry data and direct simulation Monte Carlo simulations in supersonic micro jet flows. Exp. Fluids 34, 403–411 (2003)

    Article  Google Scholar 

  31. Miles, R., Grinstead, J.: The RELIEF flow tagging technique and its application in engine testing facilities and for helium-air mixing studies. Meas. Sci. Technol. 11, 1272–1281 (2000)

    Article  Google Scholar 

  32. Miles, R., Zhou, D., Zhang, B., et al.: Fundamental turbulence measurements by RELIEF flow tagging. AIAA J. 31, 447–452 (1993)

    Article  Google Scholar 

  33. Ribarov, L., Wehrmeyer, J., Hu, S., et al.: Multiline hydroxyl tagging velocimetry measurements in reacting and nonreacting experimental flows. Exp. Fluids 37, 65–74 (2004)

    Article  Google Scholar 

  34. Pitz, R., Wehrmeyer, J.: Unseeded molecular flow tagging in cold and hot flows using ozone and hydroxyl tagging velocimetry. Meas. Sci. Technol. 11, 1259–1271 (2000)

    Article  Google Scholar 

  35. Orlemann, C., Schulz, C., Wolfrum, J.: NO-flow tagging by photodissociation of NO 2. A new approach for measuring small-scale flow structures. Chem. Phys. Lett. 307, 15–20 (1999)

    Article  Google Scholar 

  36. Krüger, S., Grünefeld, G.: Gas-phase velocity field measurements in dense sprays by laser-based flow tagging. Appl. Phys. B. 70, 463–466 (2000)

    Article  Google Scholar 

  37. Krüger, S., Grünefeld, G.: Stereoscopic flow-tagging velocimetry. Appl. Phys. B. 69, 509–512 (1999)

    Article  Google Scholar 

  38. Barker, P., Thomas, A.: Velocimetry and thermometry of supersonic flow around a cylindrical body. AIAA J. 36, 1055–1060 (1998)

    Article  Google Scholar 

  39. Rubinsztein-Dunlop, H., Littleton, B.: Ionic strontium fluorescence as a method for flow tagging velocimetry. Exp. Fluids 30, 36–42 (2001)

    Article  Google Scholar 

  40. Miles, R.B., Lempert, W.: Quantitative flow visualization in unseeded flows. Annu. Rev. Fluid Mech. 29, 285–326 (1997)

    Article  Google Scholar 

  41. Miller, S.: Photochemical reaction for the study of velocity patterns and profiles. BASc thesis, University of Toronto, Toronto (1962)

  42. Popovich, A., Hummel, R.: A new method for non-disturbing turbulent flow measurements very close to a wall. Chem. Eng. Sci. 22, 21–25 (1967)

    Article  Google Scholar 

  43. Ojha, M., Hummel, R.: Development and evaluation of a high resolution photochromic dye method for pulsatile flow studies. J. Phys. E. 21, 998–1004 (1988)

    Article  Google Scholar 

  44. Falco, R., Gendrich, C., Chu, C.: Vorticity field measurements using Laser Induced Photochemical Anemometry (LIPA). In: Seventh Symposium on Turbulent Shear Flows (1989)

  45. Falco, R., Nocera, D.: Quantitative multipoint measurements and visualization of dense solid-liquid flows using laser induced photochemical anemometry (LIPA). In: Rocco, M.C. (ed.) Particulate Two-Phase Flow, pp. 59–126, Chapter 3 (1993)

  46. Lempert, W.R., Harris, S.R.: Flow tagging velocimetry using caged dye photo-activated fluorophores. Meas. Sci. Technol. 11, 1251–1258 (2000)

    Article  Google Scholar 

  47. Gendrich, C., Koochesfahani, M., Nocera, D.: Molecular tagging velocimetry and other novel applications of a new phosphorescent supramolecule. Exp. Fluids 23, 361–372 (1997)

    Article  Google Scholar 

  48. Hartmann, W., Gray, M., Ponce, A.: Substrate induced phosphorescence from cyclodextrin-lumophore host-guest complexes. Inorganica Chim. Acta 234, 239–248 (1996)

    Article  Google Scholar 

  49. Pouya, S., Van Rhijn, A., Dantus, M., et al.: Multi-photon molecular tagging velocimetry with femtosecond excitation (FemtoMTV). Exp. Fluids 55, 1791 (2014)

    Article  Google Scholar 

  50. Shafii, M.B., Lum, C.L., Koochesfahani, M.M.: In situ LIF temperature measurements in aqueous ammonium chloride solution during uni-directional solidification. Exp. Fluids 48, 651–662 (2009)

    Article  Google Scholar 

  51. Forkey, J., Lempert, W., Miles, R.: Accuracy limits for planar measurements of flow field velocity, temperature and pressure using filtered Rayleigh scattering. Exp. Fluids 24, 151–162 (1998)

    Article  Google Scholar 

  52. Forkey, J., Finkelstein, N., Lempert, W., et al.: Demonstration and characterization of filtered Rayleigh scattering for planar velocity measurements. AIAA J. 34, 442–448 (1996)

    Article  Google Scholar 

  53. Danehy, P., Byrne, S.O’., Houwing, A.P.: Flow-tagging velocimetry for hypersonic flows using fluorescence of nitric oxide. AIAA J. 41, 263–271 (2003)

    Article  Google Scholar 

  54. Clancy, P., Kim, J., Samimy, M.: Planar Doppler velocimetry in high speed flows. In: AIAA Fluid Dynamics Conference, AIAA 1996–1990 (1996)

  55. Crafton, J., Carter, C., Elliott, G.: Three-component phase-averaged velocity measurements of an optically perturbed supersonic jet using multi-component planar Doppler velocimetry. Meas. Sci. 12, 409–419 (2001)

    Article  Google Scholar 

  56. Koochesfahani, M., Bohl, D.: Molecular tagging visualization and velocimetry of the flow at the trailing edge of an oscillating airfoil. In: 10th International Symposium on Flow Visualization (2002)

  57. Hammer, P., Pouya, S., Naguib, A., Koochesfahani, M.: A multi-time-delay approach for correction of the inherent error in single-component molecular tagging velocimetry. Meas. Sci. Technol. 24, 105302 (2013). (11pp)

    Article  Google Scholar 

  58. Prasad, A.K., Adrian, R.J.: Stereoscopic particle image velocimetry applied to liquid flows. Exp. Fluids 15, 49–60 (1993)

    Article  Google Scholar 

  59. Hu, H., Saga, T., Kobayashi, T., et al.: A study on a lobed jet mixing flow by using stereoscopic particle image velocimetry technique. Phys. Fluids 13, 3425 (2001)

    Article  MATH  Google Scholar 

  60. Bohl, D., Koochesfahani, M., Olson, B.: Development of stereoscopic molecular tagging velocimetry. Exp. Fluids 30, 302–308 (2001)

    Article  Google Scholar 

  61. Pringsheim, P.: Fluorescence and Phosphorescence. Interscience, New York (1949)

    Google Scholar 

  62. Ossler, F., Aldén, M.: Measurements of picosecond laser induced fluorescence from gas phase 3-pentanone and acetone: implications to combustion diagnostics. Appl. Phys. B Lasers Opt. 64, 493–502 (1997)

    Article  Google Scholar 

  63. Ni, T., Melton, L.A.: Two-dimensional gas-phase temperature measurements using fluorescence lifetime imaging. Appl. Spectrosc. 50, 1112–1116 (1996)

    Article  Google Scholar 

  64. Lemoine, F., Antoine, Y., Wolff, M., et al.: Simultaneous temperature and 2D velocity measurements in a turbulent heated jet using combined laser-induced fluorescence and LDA. Exp. Fluids 26, 315–323 (1999)

    Article  Google Scholar 

  65. Sakakibara, J., Hishida, K., Maeda, M.: Vortex structure and heat transfer in the stagnation region of an impinging plane jet (simultaneous measurements of velocity and temperature fields by digital particle image velocimetry and laser-induced fluorescence). Int. J. Heat Mass Transf. 40, 3163–3176 (1997)

    Article  Google Scholar 

  66. Dabiri, D., Gharib, M.: Digital particle image thermometry: the method and implementation. Exp. Fluids 11, 77–86 (1991)

    Google Scholar 

  67. Park, H.G., Dabiri, D., Gharib, M.: Digital particle image velocimetry/thermometry and application to the wake of a heated circular cylinder. Exp. Fluids 30, 327–338 (2001)

    Article  Google Scholar 

  68. Roshko, A.: On the development of turbulent wakes from vortex streets. Report 1191, National Advisory Committee for Aeronautics (1954)

  69. Berger, E., Wille, R.: Periodic flow phenomena. Annu. Rev. Fluid Mech. 4, 313–340 (1972)

    Article  Google Scholar 

  70. Oertel Jr, H.: Wakes behind blunt bodies. Annu. Rev. Fluid Mech. 22, 539–564 (1990)

    Article  MathSciNet  Google Scholar 

  71. Williamson, C.: Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech. 28, 477–539 (1996)

    Article  MathSciNet  Google Scholar 

  72. Zdravkovich, M.: Flow Around Circular Cylinders. Oxford University Press, Oxford (1997)

    MATH  Google Scholar 

  73. Incropera, F., Dewitt, D.: Introduction to Heat Transfer. John Wiley & Son, New York, NY (1996)

  74. Politovich, M.K.: Aircraft Icing caused by large supercooled droplets. J. Appl. Meteorol. 28, 856–868 (1989)

    Article  Google Scholar 

  75. Bragg, M., Gregorek, G., Lee, J.: Airfoil aerodynamics in icing conditions. J. Aircr. 23, 76–81 (1986)

    Article  Google Scholar 

  76. Heinrich, A., Ross, R., Zumwalt, G., et al.: Aircraft icing handbook, vol. 2. Gates Learjet Corp Wichita KS (1991)

  77. Gent, R., Dart, N., Cansdale, J.: Aircraft icing. Philos Trans R Soc Lond Ser A 358, 2873–2911 (2000)

    Article  MATH  Google Scholar 

  78. Bidwell, C.: Ice particle transport analysis with phase change for the E3 turbofan engine using LEWICE3D version 3.2. AIAA 2012–3037 (2012)

  79. Bidwell, C.: Icing calculations for a 3D, high-lift wing configuration. AIAA 2005–1244 (2005)

  80. Ryerson, C.C., Peck, L., Martel, C.J.: Army Aviation Operations in Icing Conditions. SAE Technical Paper. pp. SAE2003-01-2094 (2003)

  81. Peck, L., Ryerson, C.C., Martel, C.J.: Army aircraft icing. Report no. ERDC/CRREL-TR-02-13, Cold regions research and engineering laboratory, engineering research and development center hanover NH (2002)

  82. Jin, Z., Hu, H.: Icing process of small water droplets impinging onto a frozen cold plate. J. Thermophys. Heat Transf. 24, 841–845 (2010)

    Article  Google Scholar 

  83. Hu, H., Huang, D.: Simultaneous measurements of droplet size and transient temperature within surface water droplets. AIAA J. 47, 813–820 (2009)

  84. Castanet, G., Lavieille, P., Lemoine, F., et al.: Energetic budget on an evaporating monodisperse droplet stream using combined optical methods. Int. J. Heat Mass Transf. 45, 5053–5067 (2002)

  85. Li, H., Chen, F., Hu, H.: Simultaneous Measurements of Droplet Size, Velocity and Temperature of “In-flight” Droplets in a Spray Flow by using a Molecular Tagging Technique (AIAA). 2015 AIAA Science and Technology Forum and Exposition (SciTech2015). p. AIAA 2015–1224 (2015)

  86. Ballew, R.M., Demas, J.N.: An error analysis of the rapid lifetime determination method for the evaluation of single exponential decays. Anal. Chem. 61, 30–33 (1989)

    Article  Google Scholar 

  87. Ke, J., Bohl, D.: Effect of experimental parameters and image noise on the error levels in simultaneous velocity and temperature measurements using molecular tagging velocimetry/thermometry (MTV/T). Exp. Fluids 50, 465–478 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The project is partially supported by the National Aeronautical and Space Administration (NASA) (Grant NNX12AC21A) with Mr. Mark Potapczuk as the technical officer. The support of the National Science Foundation (NSF) under award numbers of CBET-1064196, IIA-1064235 and CBET-1435590 is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, F., Li, H. & Hu, H. Molecular tagging techniques and their applications to the study of complex thermal flow phenomena. Acta Mech. Sin. 31, 425–445 (2015). https://doi.org/10.1007/s10409-015-0464-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-015-0464-z

Keywords

Navigation