Skip to main content
Log in

Response of a circular cylinder wake to a symmetric actuation by non-thermal plasma discharges

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

In this study, the flow past a circular cylinder is manipulated by two plasma discharges placed on both sides of the model (at ±50°). A parametric investigation by force balance is conducted to define the sensitivity of the flow field to unsteady perturbations imparted by plasma actuators (dielectric barrier discharge) at 15.6 m/s (Re D = 40,000). Effects of simple sinusoidal waveform, burst modulation and amplitude modulation are compared for low-frequency excitations. Regardless of the excitation mode, the cylinder experiences a large increase in the drag coefficient. The larger drag increase is observed for excitation related to the lock-on regime. Fast PIV measurements and triple decomposition by proper orthogonal decomposition are performed to extract the dynamical changes in the cylinder wake and to discriminate the control effects on the coherent and fluctuating turbulence. As expected, the control principally acts on the coherent flow structures. When forced, the vortices form closer to the base of the cylinder regardless of the actuation mode. This results in the drag increase observed by force measurements. The effectiveness of burst modulation is also due to the suppression of irregular shedding that is observed in the natural flow sequence and to a high level of correlation between the upper and lower vortex shedding. Finally, flow visualizations indicate that similar results can be obtained at higher Reynolds number (Re D = 128,000, 50 m/s).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Achenbach E (1971) Influence of surface roughness on the cross-flow around a circular cylinder. J Fluid Mech 46:321–335

    Article  Google Scholar 

  • Artana G, Diprimio G, Moreau E, Touchard G (2001) Electrohydrodynamic actuators on a subsonic air flow around a circular cylinder. AIAA paper 2001-3056

  • Artana G, Sosa R, Moreau E, Touchard G (2003) Control of the near-wake flow around a circular cylinder with electrohydrodynamic actuators. Exp Fluids 35:580–588

    Article  Google Scholar 

  • Bari C, Favier DP, Maresca CA, Telionis DP (1986) Vortex shedding and lock-on of a circular cylinder in oscillatory flow. J Fluid Mech 170:527–544

    Article  Google Scholar 

  • Ben Chiekh M, Michard M, Grosjean N, Bera JC (2004) Reconstruction temporelle d’un champ aérodynamique instationnaire à partir de mesures PIV non résolues dans le temps. Proceedings of 9ieme CFVL, September 2004, Brussels, Belgium

  • Benard N, Moreau E (2010) Capabilities of the dielectric barrier discharge plasma actuator for multi-frequency excitations. J Phys D Appl Phys 43:145201

    Article  Google Scholar 

  • Benard N, Moreau E (2012a) EHD force and electric wind produced by plasma actuators used for airflow control. AIAA paper 2012-3136

  • Benard N, Moreau E (2012b) Role of the electric waveform supplying a dielectric barrier discharge plasma actuator. Appl Phys Lett 100:193503

    Article  Google Scholar 

  • Blevins RD (1985) The effect of sound on vortex shedding from cylinders. J Fluid Mech 165:217–237

    Article  Google Scholar 

  • Bonnet JP, Delville J (2001) Review of coherent structures in turbulent free shear flows and their possible influence on computational methods. Flow Turb Combust 66:333–353

    Article  MATH  Google Scholar 

  • Bonnet JP, Delville J, Glauser MN, Antonia RA, Bisset DK, Cole DR, Fiedler HE, Garem JH, Hilberg D, Jeong J, Kevlahan NKR, Ukeiley LS, Vincendeau E (1998) Collaborative testing of eddy structure identification methods in free turbulent shear flows. Exp Fluids 25:197–225

    Article  Google Scholar 

  • Braud C, Heitz D, Braud P, Arroyo G, Delville J (2004) Analysis of the wake-mixing-layer interaction using multipleplane PIV and 3D classical POD. Exp Fluids 37:95–104

    Article  Google Scholar 

  • Braza M, Chassaing P, Ha Minh H (1986) Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder. J Fluid Mech 165:79–130

    Article  MathSciNet  MATH  Google Scholar 

  • Cattafesta LN, Sheplak M (2011) Actuators for active flow control. Ann Rev Fluid Mech 43:247–272

    Article  Google Scholar 

  • Celik B, Beskok A (2009) Mixing induced by a transversely oscillating circular cylinder in a straight channel. Phys Fluids 21:073601

    Article  Google Scholar 

  • Choi H, Jeon WP, Kim J (2008) Control of low over a bluff body. Ann Rev Fluid Mech 40:113–139

    Article  MathSciNet  Google Scholar 

  • Cordier L, Bergmann M (2003) Proper orthogonal decomposition: an overview. Lecture series 2003-03 in VKI. Post-processing of experimental and numerical data, vol 2

  • Corke TC, Enloe CL, Wilkinson SP (2010) Dielectric barrier discharge plasma actuators for flow control. Ann Rev Fluid Mech 42:505–529

    Article  Google Scholar 

  • Debien A, Benard N, Moreau E (2012a) Unsteady aspect of the electrohydrodynamic force produced by surface dielectric barrier discharge actuators. Appl Phys Lett 100:013901

    Article  Google Scholar 

  • Debien A, Benard N, Moreau E (2012b) Streamer inhibition for improving force and electric wind produced by surface DBD actuators. J Phys D Appl Phys 45:215201

    Article  Google Scholar 

  • Gad-el-Hak M, Pollard A, Bonnet JP (1998) Flow control: fundamentals and practices. Lecture notes physics, vol 53. Springer, Berlin

    Book  MATH  Google Scholar 

  • Glezer A, Amitay M, Honohan AM (2005) Aspects of low- and high-frequency actuation for aerodynamic flow control. AIAA J 43:1501–1511

    Article  Google Scholar 

  • Griffin MO, Ramberg SE (1976) Vortex shedding from a cylinder vibrating in line with an incident uniform flow. J Fluid Mech 75:257–271

    Article  Google Scholar 

  • Huerre P, Monkewitz PA (1985) Absolute and convective instabilities in free shear layers. J Fluid Mech 159:151–168

    Article  MathSciNet  MATH  Google Scholar 

  • Jukes TN, Choi KS (2009a) Control of unsteady flow separation over a circular cylinder using dielectric-barrier-discharge surface plasma. Phys Fluids 21:094106

    Article  Google Scholar 

  • Jukes TN, Choi KS (2009b) Flow control around a circular cylinder using pulsed dielectric barrier discharge surface plasma. Phys Fluids 21:084103

    Article  Google Scholar 

  • Kim J, Choi H (2005) Distributed forcing of flow over a circular cylinder. Phys Fluids 17:033103

    Article  Google Scholar 

  • Kim W, Yoo JY, Sung J (2006) Dynamic of vortex lock-on in a perturbed cylinder wake. Phys Fluids 18:074103

    Article  Google Scholar 

  • Konstantidinis E, Balabani S (2007) Symmetric vortex shedding in the near wake of a circular cylinder due to streamwise perturbations. J Fluids Struct 23:1047–1063

    Article  Google Scholar 

  • Konstantinidis E, Balabani S (2008) Flow structure in the locked-on wake of a cylinder in pulsating flow: effect of forcing amplitude. Int J Heat Mass Transf 29:1567–1576

    Google Scholar 

  • Li Y, Zhang X, Huang X (2009) The use of plasma actuators for bluff body broadband noise control. Exp Fluids 49:367–377

    Article  Google Scholar 

  • Liu WP, Brodie GH (2000) A demonstration of MEMS-based active turbulence transitioning. J Heat Fluid Flow 21:297–303

    Article  Google Scholar 

  • McLaughlin T, Munska M, Vaeth J, Dauwalter T, Googe J, Siegel S (2004) Plasma-based actuators for cylinder wake vortex control. AIAA paper 2004-2129

  • McLaughlin TE, Felker B, Avery JC, Enloe CL (2006) Further experiments in cylinder wake modification with dielectric barrier discharge forcing. AIAA paper 2006-1409

  • Munska MD, McLaughlin TE (2005) Circular cylinder flow control using plasma actuators. AIAA paper 2005-141

  • Naim A, Greenblatt D, Seifert A, Wygnanski I (2007) Active control of a circular cylinder flow at transitional Reynolds numbers. Flow Turb Combust 78:383–407

    Article  Google Scholar 

  • Nakamura H, Igarashi T (2004) Unsteady heat transfer from a circular cylinder for Reynolds numbers from 3000 to 15,000. Int J Heat Fluid Flow 25:741–748

    Article  Google Scholar 

  • Nishimura H, Taniike Y (2001) Aerodynamic characteristics of fluctuating forces on a circular cylinder. J Wind Eng Ind Aerodyn 89:713–723

    Article  Google Scholar 

  • Noack B, Afanasiev K, Morzynski M, Tadmor G, Thiele F (2003) A hierarchy of low-dimensional models for the transient and post transient cylinder wake. J Fluids Mech 497:335–363

    Article  MathSciNet  MATH  Google Scholar 

  • Noger C, Touchard G, Chang JS (1997) Active controls of electrohydrodynamically induced secondary flow in corona discharge reactor. Proceedings of ISNPTP

  • Norberg C (1998) LDV measurements in the near wake of a circular cylinder. In: Bearman PW, Williamson CHK (eds) Proceedings of the 1998 conference on bluff body wakes and vortex-induced vibration. Washington, DC, pp 1–12

  • Norberg C (2001) Flow around a circular cylinder: aspects of fluctuating lift. J Fluids Struct 15:459–469

    Article  Google Scholar 

  • Pastoor M, Henning L, Noack B, King R, Tadmor G (2008) Feedback shear layer control for bluff body drag reduction. J Fluid Mech 608:161–196

    Article  MATH  Google Scholar 

  • Perrin R, Braza M, Cid E, Cazin S, Barthet A, Sevrain A, Mockett C, Thiele F (2007) Obtaining phase averaged turbulence properties in the near wake of a circular cylinder at high Reynolds number using POD. Exp Fluids 43:341–355

    Article  Google Scholar 

  • Perrin R, Braza M, Cid E, Cazin S, Chassaing P, Mockett C, Reimann T, Thiele F (2008) Coherent and turbulent process analysis in the flow past a circular cylinder at high Reynolds number. J Fluids Struct 24:1313–1325

    Article  Google Scholar 

  • Reynolds WC, Hussain AKMF (1972) The mechanics of an organized wave in turbulent shear flow. Part 3. Theoretical models and comparisons with experiments. J Fluid Mech 54:263–288

    Article  Google Scholar 

  • Sirovich L (1987) Turbulence and the dynamics of coherent structures. Part 1,2,3. Quart Appl Math 3:561–571

    MathSciNet  Google Scholar 

  • Sosa R, d’Adamo J, Artana G (2009) Circular cylinder drag reduction by three-electrode plasma actuators. J Phys: Conf Ser 166:012015

    Article  Google Scholar 

  • Sung HJ, Hwang KS, Hyun JM (1994) Experimental study on mass-transfer from a circular-cylinder in pulsating flow. Int J Heat Mass Transf 37:2203–2210

    Article  Google Scholar 

  • Sung Y, Kim W, Mungal MG, Cappelli MA (2006) Aerodynamic modification of flow over bluff objects by plasma actuation. Exp Fluids 41:479–486

    Article  Google Scholar 

  • Thomas FO, Kozlov A, Corke TC (2008) Plasma actuators for cylinder flow control and noise reduction. AIAA J 46:1921–1931

    Article  Google Scholar 

  • Unal UO, Atlar M (2010) An experimental investigation into the effect of vortex generators on the near-wake flow of a circular cylinder. Exp Fluids 48:1059–1079

    Article  Google Scholar 

  • Van Oudheusden BW, Scarano F, Van Hinsberg NP, Watt DW (2005) Phase-resolved characterization of vortex shedding in the near wake of a square-section cylinder at incidence. Exp Fluids 39:86–98

    Article  Google Scholar 

  • Vukasinovic B, Glezer A, Gordeyev S, Jumper E, Kibens V (2010) Hybrid control of a turret wake, part I: aerodynamic effects. AIAA paper 2010-0086

  • Wang K, Weng M, Gordeyev S, Jumper E (2010) Computation of aero-optical distortions over a cylindrical turret with passive flow control. AIAA paper 2010-4498

  • Williamson CHK (1996) Vortex dynamics in the cylinder wake. Ann Rev Fluid Mech 28:477–539

    Article  Google Scholar 

  • Zdravkovich MM (2003) Flow around circular cylinders volume 2 applications. Oxford Sciences Publications, Oxford

    Google Scholar 

Download references

Acknowledgments

The authors greatly thank R. Perrin (Institut Pprime) and R. Sosa (Univ. Buenos-Aires) for their friendly and fruitful discussions on the data-processing methods introduced in this paper and the analysis of the results. The authors also acknowledge R. Bellanger (Institut Pprime) for his technical help during the PIV experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Benard.

Additional information

This article is part of the collection Topics in Flow Control. Guest Editors J. P. Bonnet and L. Cattafesta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benard, N., Moreau, E. Response of a circular cylinder wake to a symmetric actuation by non-thermal plasma discharges. Exp Fluids 54, 1467 (2013). https://doi.org/10.1007/s00348-013-1467-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-013-1467-9

Keywords

Navigation