Skip to main content
Log in

Visual hull method for tomographic PIV measurement of flow around moving objects

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Tomographic particle image velocimetry (PIV) is a recently developed method to measure three components of velocity within a volumetric space. We present a visual hull technique that automates identification and masking of discrete objects within the measurement volume, and we apply existing tomographic PIV reconstruction software to measure the velocity surrounding the objects. The technique is demonstrated by considering flow around falling bodies of different shape with Reynolds number ~1,000. Acquired image sets are processed using separate routines to reconstruct both the volumetric mask around the object and the surrounding tracer particles. After particle reconstruction, the reconstructed object mask is used to remove any ghost particles that otherwise appear within the object volume. Velocity vectors corresponding with fluid motion can then be determined up to the boundary of the visual hull without being contaminated or affected by the neighboring object velocity. Although the visual hull method is not meant for precise tracking of objects, the reconstructed object volumes nevertheless can be used to estimate the object location and orientation at each time step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Adrian RJ, Westerweel J (2011) Particle image velocimetry. Cambridge University Press, New York

    Google Scholar 

  • Atkinson C, Soria J (2009) An efficient simultaneous reconstruction technique for tomographic particle image velocimetry. Exp Fluids 47:553–568

    Article  Google Scholar 

  • Atkinson CH, Dillon-Gibbons CJ, Herpin H, Soria J (2008) Reconstruction techniques for tomographic PIV (Tomo-PIV) of a turbulent boundary layer. In: 14th International symposium on applications of laser techniques to fluid mechanics. Lisbon, Portugal

  • Balachandar S, Eaton JK (2010) Turbulent dispersed multiphase flow. Annu Rev Fluid Mech 40:111–133

    Article  Google Scholar 

  • Bandyopadhyay PR (2005) Trends in biorobotic autonomous undersea vehicles. IEEE J Ocean Eng 30:109–139

    Article  Google Scholar 

  • Belden J, Techet AH (2011) Simultaneous quantitative flow measurement using PIV on both sides of the air-water interface for breaking waves. Exp Fluids 50:149–161

    Article  Google Scholar 

  • Discetti S, Astarita T (2011) A fast multi-resolution approach to tomographic PIV. Exp Fluids. doi:10.1007/s00348-011-1119-x

    Google Scholar 

  • Elsinga GE (2007) Tomographic particle image velocimetry and its application to turbulence boundary layers. Delft University of Technology, Dissertation

    Google Scholar 

  • Elsinga GE, Westerweel J (2011) Tomographic-PIV measurement of the flow around a zigzag boundary layer trip. Exp Fluids. doi:10.1007/s00348-011-1153-8

    Google Scholar 

  • Elsinga GE, Scarano F, Wieneke B, van Oudheusden BW (2006) Tomographic particle image velocimetry. Exp Fluids 41:933–947

    Article  Google Scholar 

  • Flammang BE, Lauder GV, Troolin DR, Strand TE (2011) Volumetric imaging of fish locomotion. Biol Lett. doi:10.1098/rsbl.2011.0282

    MATH  Google Scholar 

  • Foeth EJ, van Doorne CWH, van Terwisga T, Wieneke B (2006) Time resolved PIV and flow visualization of 3D sheet cavitation. Exp Fluids 40:503–513

    Article  Google Scholar 

  • Gao Q, Ortiz-Duenas C, Longmire EK (2010) Eddy structure in turbulent boundary layers based on tomographic PIV. In: 15th international symposium on applications of laser techniques to fluid mechanics. Lisbon, Portugal

  • Gonzalez RC, Woods RE (2002) Digital image processing. Prentice-Hall, New Jersey

    Google Scholar 

  • Hain R, Kahler CJ, Michaelis D (2008) Tomographic and time resolved PIV measurements in on a finite cylinder mounted on a flat plate. Exp Fluids 45(4):715–724

    Article  Google Scholar 

  • Herman GT, Lent A (1976) Iterative reconstruction algorithms. Comput Biol Med 6:273–294

    Article  Google Scholar 

  • Hinsch KD (2002) Holographic particle image velocimetry. Meas Sci Technol 13:61–72

    Article  Google Scholar 

  • Hori T, Sakakibara J (2004) High speed scanning stereoscopic PIV for 3D vorticity measurement in liquids. Meas Sci Technol 15:1067–1078

    Article  Google Scholar 

  • Hounsfield GN (1973) Computerized transverse axial scanning (tomography): part 1. Description of system. Br Inst Radiol 46:1016–1022

    Article  Google Scholar 

  • Jeon YJ, Sung HJ (2010) PIV measurement of flow around an arbitrarily moving body. Exp Fluids 50:787–798

    Article  Google Scholar 

  • Jeon YJ, Sung HJ (2011) Simultaneous PIV measurement of flow around a moving body. In: 9th international symposium on particle image velocimetry. Kobe, Japan

  • Khalitov DA, Longmire EK (2002) Simultaneous two-phase PIV by two-parameter phase discrimination. Exp Fluids 32:252–268

    Article  Google Scholar 

  • Khun M, Ehrenfried K, Bosbach J, Wagner C (2010) Large-scale tomographic particle image velocimetry using helium-filled soap bubbles. Exp Fluids 50:929–948

    Article  Google Scholar 

  • Kiger KT, Pan C (2000) PIV technique for the simultaneous measurement of dilute two-phase flows. J Fluids Eng 122:811–818

    Article  Google Scholar 

  • Kim H, Groβe S, Elsinga GE, Westerweel J (2011) Full 3D-3C velocity measurement inside a liquid immersion droplet. Exp Fluids. doi:10.1007/s00348-011-1053-y

  • Laurentini A (1994) The visual hull concept for silhouette-based image understanding. IEEE Trans Pattern Anal Machine Intell 16:150–162

    Article  Google Scholar 

  • Laurentini A (1997) How many 2D silhouettes does it take to reconstruct a 3D Object? Comput Vision Image Underst 67:81–87

    Article  Google Scholar 

  • Lua KB, Lai KC, Lim TT, Yeo KS (2010) On the aerodynamic characteristics of hovering rigid and flexible hawkmoth-like wings. Exp Fluids 49:1263–1291

    Article  Google Scholar 

  • Maas HG, Gruen A, Papantoniou D (1993) Particle tracking velocimetry in three-dimensional flows. Part 1. Photogrammetric determination of particle coordinates. Exp Fluids 15:133–146

    Article  Google Scholar 

  • Matusik W, Buehler C, Raskar R, Gortler SJ, McMillan L (2000) Image-based visual hulls. In: SIGGRAPH ‘00 proceedings of the 27th annual conference on computer graphics and interactive techniques. New Orleans, Louisiana USA

  • Mulayim AY, Yilmaz U, Atalay V (2003) Silhouette-based 3-D model reconstruction from multiple images. IEEE Trans Syst Man Cybern B 33:582–591

    Article  Google Scholar 

  • Murphy DW, Webster DR, Yen J (2011) A high-speed tomographic PIV investigation of plankton-turbulence interaction. In: 9th international symposium on particle image velocimetry. Kobe, Japan

  • Novara M, Batenburg KJ, Scarano F (2010) Motion tracking-enhanced MART for tomographic PIV. Meas Sci Technol 21:035401

    Article  Google Scholar 

  • Ortiz-Duenas C, Kim J, Longmire EK (2010) Investigation of liquid–liquid drop coalescence using tomographic PIV. Exp Fluids 49:111–129

    Article  Google Scholar 

  • Rand R, Pratap R, Ramani D, Cipolla J, Kirschner I (1997) Impact dynamics of a supercavitating underwater projectile DETC. ASME Des Eng Tech Conf

  • Reiser MB, Dickinson MH (2003) A test bed for insect-inspired robotic control. Phil Trans R Soc Lond A 361:2267–2285

    Article  MathSciNet  Google Scholar 

  • Ruiz LA, Whittlesey RW, Dabiri JO (2011) Vortex-enhanced propulsion. J Fluid Mech 668:5–32

    Article  MATH  Google Scholar 

  • Sakakibara J, Nakagawa M, Yoshida M (2004) Stereo-PIV study of flow around a maneuvering fish. Exp Fluids 36:282–293

    Article  Google Scholar 

  • Scarano F, Poelma C (2009) Three-dimension vorticity patterns of cylinder wakes. Exp Fluids 47:69–83

    Article  Google Scholar 

  • Vanek B, Bokor J, Balas GJ, Arndt REA (2007) Longitudinal motion control of a high-speed supercavitation vehicle. J Vib Control 13:159–184

    Article  MATH  Google Scholar 

  • Verhoeven D (1993) Limited-data computed tomography algorithms for physical sciences. Appl Opt 32:3736–3754

    Article  Google Scholar 

  • Waggett RJ, Buskey EJ (2006) Copepod sensitivity to flow fields: detection by copepods of predatory ctenopores. Mar Ecol Prog Ser 323:205–211

    Article  Google Scholar 

  • Waggett RJ, Buskey EJ (2007) Copepod escape behavior in non-turbulent and turbulent hydrodynamic regimes. Mar Ecol Prog Ser 334:193–198

    Article  Google Scholar 

  • Webster DR, Weissburg MJ (2009) The hydrodynamics of chemical cues among aquatic organisms. Annu Rev Fluid Mech 41:73–90

    Article  Google Scholar 

  • Wieneke B (2008) Volume self-calibration for 3D particle image velocimetry. Exp Fluids 45:549–556

    Article  Google Scholar 

  • Willert CE, Gharib M (1992) Three-dimensional particle imaging with a single camera. Exp Fluids 12:353–358

    Article  Google Scholar 

  • Worth NA, Nickels TB (2008) Acceleration of Tomo-PIV by estimating the initial volume intensity distribution. Exp Fluids 45:847–856

    Article  Google Scholar 

  • Yu J, Hu Y, Huo J, Wang L (2009) Dolphin-like propulsive mechanism based on an adjustable scotch yoke. Mech Mach Theory 44:603–614

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge support from the National Science Foundation through Grant IDBR-0852875. D. Adhikari was partially supported by a University of Minnesota Graduate Fellowship while undertaking this research. The authors would like to thank the reviewers for their invaluable suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Adhikari.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MPEG 12022 kb)

Supplementary material 2 (MPEG 23756 kb)

Supplementary material 3 (MPEG 14944 kb)

Supplementary material 4 (MPEG 12152 kb)

Appendix: Formulae derivations for obscured regions of a simple object shape and standard four-camera configuration

Appendix: Formulae derivations for obscured regions of a simple object shape and standard four-camera configuration

Consider the camera arrangement and object orientation as shown in Fig. 17. We assume the lines of sight are parallel for each camera, and the object is a cuboid. The inclination angles of Cameras 1–4 are α1, α2, α3, and α4 respectively. The dimensions of the cuboid are a (length) × b (width) × c (depth), where a and b are parallel to the laser sheet, and the side faces of the object are aligned with the camera angles. The distance from the rear of the object (relative to the cameras) to the rear edge of the laser sheet is given by t.

The fully obscured region (green in Fig. 17) is not optically accessible by any camera. For the given object orientation, this region can be either trapezoidal or pyramidal in shape, depending on the laser sheet thickness, object location, and object dimension. Mathematically, the following relations must be satisfied for a trapezoidal-shaped fully obscured region:

$$ \tan \left( {\alpha_{1} } \right) + \tan \left( {\alpha_{3} } \right) < \frac{b}{t} $$
(6)
$$ \tan \left( {\alpha_{2} } \right) + \tan \left( {\alpha_{4} } \right) < \frac{a}{t} $$
(7)

Otherwise, the fully obscured region is pyramidal.

The partially obscured region (blue in Fig. 17), which is accessible by less than 3 cameras, can be calculated by subtracting the fully obscured volume from the object “shadow” (i.e. a × b × t).

1.1 Trapezoidal fully obscured region

First, we consider the trapezoidal fully obscured volume (Fig. 18) which can be split into a cuboid (blue), 4 half—cuboids (red) and 4 pyramids (green). We can obtain the total volume by summing the 9 parts (Fig. 19).

$$ a^{\prime } = a - t \times \tan \left( {\alpha_{2} } \right) - t \times \tan \left( {\alpha_{4} } \right) $$
(8)
$$ b^{\prime } = a - t \times \tan \left( {\alpha_{1} } \right) - t \times \tan \left( {\alpha_{3} } \right) $$
(9)
Fig. 18
figure 18

Schematic representation of the a trapezoidal fully obscured region, and b an exploded view of the various subvolumes

Fig. 19
figure 19

Schematic drawing and dimensions of a cuboid (blue), half cuboid (red) and pyramid (green) that make up the trapezoid

(1) Cuboid

$$ \begin{aligned} {\text{Volume}}\, ( {\text{Cuboid)}} & = a^{\prime } \times b^{\prime } \times t = {\text{abt}} - t^{2} \left[ {a\left( {\tan \left( {\alpha_{1} } \right) + \tan \left( {\alpha_{3} } \right)} \right) + b\left( {\tan \left( {\alpha_{2} } \right) + \tan \left( {\alpha_{4} } \right)} \right)} \right] \\ & \quad + t^{3} \left( {\tan \left( {\alpha_{1} } \right) + \tan \left( {\alpha_{3} } \right)} \right)\left( {\tan \left( {\alpha_{2} } \right) + \tan \left( {\alpha_{4} } \right)} \right) \\ \end{aligned} $$
(10)

(2) Total Volume of 4 Half Cuboids

$$ \begin{aligned} {\text{Volume}}\,({\text{Half}}\, {\text{Cuboids}}) & = \frac{1}{2}\left[ {a^{\prime } t\left( {\left( {\tan \left( {\alpha_{1} } \right) + \tan \left( {\alpha_{3} } \right)} \right) + b^{\prime } t\left( {\tan \left( {\alpha_{2} } \right) + \tan \left( {\alpha_{4} } \right)} \right)} \right)} \right] \\ & = \frac{{t^{2} }}{2}\left[ {a\left( {\tan (\alpha_{1} ) + \tan (\alpha_{3} )} \right) + b(\tan (\alpha_{2} ) + \tan (\alpha_{4} ))} \right] \\ & \quad - t^{3} (\tan (\alpha_{1} ) + \tan (\alpha_{3} ))(\tan (\alpha_{2} ) + \tan (\alpha_{4} )) \\ \end{aligned} $$
(11)

(3) Total Volume of 4 Pyramids

$$ \begin{aligned} {\text{Volume}}\,({\text{Pyramids}}) & = \frac{1}{3} \times t \times [t \times (\tan (\alpha_{2} ) \times \tan (\alpha_{4} ) + \tan (\alpha_{4} ) \times \tan (\alpha_{3} ) \\ & \quad + \tan (\alpha_{3} ) \times \tan (\alpha_{2} ) + \tan (\alpha_{2} ) \times \tan (\alpha_{1} ) ) ] \\ \end{aligned} $$
(12)
$$ \begin{aligned} {\text{Volume}}\, ( {\text{Fully}}\,{\text{Obscured)}} & = {\text{Volume\,(Cuboid)}} + {\text{Volume\,(Half}}\,{\text{Cuboids)}} + {\text{Volume\,(Pyramids)}} \\ & = {abt} - \frac{{t^{2} }}{2} \left[ {a\left( {\tan (\alpha_{1} ) + \tan (\alpha_{3} )} \right) + b\left( {\tan (\alpha_{2} ) + \tan (\alpha_{4} )} \right)} \right] \\ & \quad + \frac{{t^{3} }}{3}\left( {\tan (\alpha_{1} ) + \tan (\alpha_{3} )} \right)\left( {\tan (\alpha_{2} ) + \tan (\alpha_{4} )} \right) \\ \end{aligned} $$
(13)

The partially obscured region is given by:

$$ \begin{gathered} {\text{Volume}}\,({\text{Partially}}\,{\text{Obscured}}) = {abt} - {\text{Volume}}\, ( {\text{Fully}}\,{\text{Obscured)}} \hfill \\ = t^{2} \left[ {\frac{a}{2}(\tan (\alpha_{1} ) + (\tan (\alpha_{3} ) + \frac{b}{2}(\tan (\alpha_{2} ) + (\tan (\alpha_{4} )) - \frac{t}{3}((\tan (\alpha_{1} ) + (\tan (\alpha_{3} ))(\tan (\alpha_{2} ) + (\tan (\alpha_{4} ))} \right] \hfill \\ \end{gathered} $$
(14)

To simplify Eqs. (13) and (14) further, we consider a symmetric camera arrangement (i.e., α1 = α2 = α3 = α4 = α) and a cubic object (i.e. a = b = c).

$$ {\text{Volume}}\, ( {\text{Fully }}\,{\text{Obscured)}} = a^{2} t - 2at^{2} \tan \left( \alpha \right) + \frac{{4t^{3} }}{3}\tan^{2} \left( \alpha \right) $$
(15)
$$ {\text{Volume}}\,({\text{Partially }}\,{\text{Obscured}}) = 2at^{2} \tan \left( \alpha \right) - \frac{{4t^{3} }}{3}\tan^{2} \left( \alpha \right) $$
(16)

where the assumptions for trapezoidal-shape (see Eqs. 6 and 7) both reduce to

$$ \tan (\alpha ) < \frac{a}{2t} $$
(17)

1.2 Pyramidal fully obscured region (simplified with α1 = α2 = α3 = α4 = α and a = b = c)

If \( \tan (\alpha ) \ge \frac{a}{2t} \), the fully obscured volume will converge to a pyramidal shape (see green in Fig. 20)

Fig. 20
figure 20

Schematic diagram of a specific “4-corner” camera arrangement where t is large such that tan(α) > a/2t. The white region is optically accessible by all cameras

The volume of the green pyramid (fully obscured region) is given by:

$$ {\text{Volume}}\,({\text{Fully}}\,{\text{Obscured}}) = \frac{1}{3} \times a \times a \times h = \frac{{a^{3} }}{6\tan \left( \alpha \right)} , $$
(18)

where the height h is found easily by trigonometry.

The partially obscured region is now given by:

$$ {\text{Volume\,(Partially}}\,{\text{Obscured)}} = {abt} - {\text{Volume}}\, ( {\text{Fully }}\,{\text{Obscured)}} - {\text{Volume}}\,({\text{Fully}}\,{\text{Obscured}}) \times \left( {\frac{t - h}{t}} \right)^{3} $$
(19)

where the last term is the white optically accessible region in Fig. 20. Note, however, that this equation, when simplified, reduces to the same form as Eq. (16).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adhikari, D., Longmire, E.K. Visual hull method for tomographic PIV measurement of flow around moving objects. Exp Fluids 53, 943–964 (2012). https://doi.org/10.1007/s00348-012-1338-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-012-1338-9

Keywords

Navigation