Skip to main content
Log in

Generation and visualization of volumetric PIV data fields

  • Review Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

This review paper addresses the integration of advanced visualization techniques into the analysis of volumetric vector fields obtained by experimental measurement techniques such as holographic PIV, tomographic PIV, 3D PTV or defocusing PIV. The paper follows the idea of the pipeline process for flow visualization focusing on experimental data generation and advanced visualization techniques. The paper tries to help the experimentalist navigating the landscape of recently developed volumetric measurement techniques and advanced visualization techniques. The processing steps and related difficulties are illustrated with the transitional backward facing step flow experiment at Re h = 4,440. The paper shows the usage of flow visualization for quantitative volumetric PIV data analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Agüi JC, Jimenez J (1987) On the performance of particle tracking. J Fluid Mech 185:447–468

    Article  Google Scholar 

  • Akenine-Möller T, Haines E, Hoffman N (2008) Real-time rendering, 3rd edn. A.K. Peters Ltd

  • Arroyo MP, Hinsch KD (2008) Recent developments of PIV towards 3D measurements. Top App Phys 112:127–154

    Article  Google Scholar 

  • Asimov D (1993) Notes on the topology of vector fields and flows. NASA Ames Research Center Report RNR-93-003

  • Atkinson CH, Soria J (2007) Algebraic reconstruction techniques for tomographic particle image velocimetry. 16th Australasian fluid mechanics conference

  • Atkinson CH, Soria J (2009) An efficient simultaneous reconstruction technique for tomographic particle image velocimetry. Exp Fluids

  • Awatsuji Y, Fujii A, Kubota T, Matoba O (2006) Parallel three-step phase-shifting digital holography. Appl Opt 45:2995–3002

    Article  Google Scholar 

  • Baek SJ, Lee SJ (1996) A new two-frame particle tracking algorithm using match probability. Exp Fluids 23:261–304

    Google Scholar 

  • Barnhardt DH, Hampp N, Halliwell NA, Coupland JM (2002) Digital holographic velocimetry with bacteriorhodopsin (BR) for real-time recording and numeric reconstruction. 11th International symposium on application of laser techniques to fluid mechanics

  • Battke H, Stalling D, Hege HC (1996) Fast line integral convolution for arbitrary surfaces in 3D. Vis Math

  • Berkooz G, Holmes P, Lumley JL (1993) The proper orthogonal decomposition in the analysis of turbulent flows. Annu RevFluid Mech 25:539–575

    Article  MathSciNet  Google Scholar 

  • Biswas G, Breuer M, Durst F (2004) Backward-facing step flows for various expansion ratios at low and moderate Reynolds numbers. Trans ASME 126:362–374

    Google Scholar 

  • Biwole PH, Yan W, Zhang Y, Roux1 J-J (2009) A complete 3D particle tracking algorithm and its applications to the indoor airflow study. Meas Sci Technol 20:115403

    Google Scholar 

  • Blundell B, Schwarz A (2000) Volumetric three dimensional display systems. Wiley, New York

    Google Scholar 

  • Boring E, Pang A (1996) Directional flow visualization of vector fields. IEEE Visualization’96, 389–392

    Google Scholar 

  • Bouhoubeiny E, Druault P (2009) Note on the POD-based time interpolation from successive PIV images. CR Mecanique 337:776–780

    Article  MATH  Google Scholar 

  • Brill M, Hagen H, Djatschin W, Klimenko SV (1994) Streamball techniques for flow visualization. In: Proceedings of IEEE visualization 94, Oct 17–21, Washington, DC, pp 225–231

  • Brücker C (1996) 3-D scanning-particle-image-velocimetry: technique and application to a spherical cap wake flow. Appl Sci Res 56:157–179

    Article  Google Scholar 

  • Brunton SL, Rowley CW (2010) Fast computation of finite-time Lyapunov exponent fields for unsteady flows. CHAOS 20:017503

    Article  MathSciNet  Google Scholar 

  • Buraga-Lefevre C, Coetemllec S, Lebrun D, Özkul C (2000) Application of wavelet transform to hologram analysis: three-dimensional location of particles. Opt Lasers Eng 33:409–421

    Article  Google Scholar 

  • Burger K, Schneider J, Kondratieva P, Kruger J, Westermann R(2007) Interactive visual exploration of instationary 3D-flows. Eurographics/IEEE VGTC Symposium on Visualization (EuroVis)

  • Buxton W, Fitzmaurice GW (1998) HMD’s, caves, and chameleon: a human-centric analysis of interaction in virtual space. Comput Graph 32(4):64–68

    Article  Google Scholar 

  • Chabral B, Leedom LC (1993) Imaging vector fields using line integral convolution. Proceedings of SIGGRAPH ’93, 263–270

  • Chakraborty O, Balchandar S, Adrian RJ (2005) On the relationships between local vortex identification schemes. J Fluid Mech 535:189–214

    Article  MathSciNet  MATH  Google Scholar 

  • Champagnat F, Plyer A, Le Besnerais G, Leclaire B, Le Sant Y (2009) How to calculate dense PIV vector fields at video rate. 8th International symposium on particle image velocimetry, PIV09, Melbourne, Victoria (Australia), August 25–28

  • Chaves H, Uhlemann Ch, Brücker Ch (2010) Dynamic focussing for wide-field light-sheet scanning. In: Proceedings of 15th international symposium on application of laser techniques to fluid mechanics, Lisbon

  • Chong MS, Perry AE, Cantwell BJ (1990) A general classification of three-dimensional flow fields. Phys Fluids A2:765–777

    MathSciNet  Google Scholar 

  • Coetemllec S, Lebrun D, Özkul C (2002) Application of the two-dimensional fractional-order fourier transformation to particle field digital holography. J Opt Soc Am A 19:1537–1546

    Article  Google Scholar 

  • Cossairt OS, Napoli J, Hill SL, Dorval RK, Favalora GE (2007) Occlusion-capable multiview volumetric three-dimensional display. Appl Opt 46(8):1244–1250

    Article  Google Scholar 

  • Crawfis R, Max N, Becker B, Cabral B (1993) Volume rendering of 3D scalar and vector fields at LLNL. Proceedings, Supercomputing’93, 570–576

  • Cucitore R, Quadrio M, Baron A (1999) On the effectiveness and limitations of local criteria for the identification of a vortex. Eur J Mech B Fluids 18:261–282

    Article  MathSciNet  MATH  Google Scholar 

  • de Kat R, van Oudheusden BW (2010) Instantaneous planar pressure from PIV: analytic and experimental test-cases. In: Proceedings of 15th international symposium on applications of laser techniques to fluid mechanics, Lisbon

  • de Leeuw W, van Liere R (1998) Comparing LIC and spot noise. In: Proceedings of the conference on Visualization ’98, pp 359–365

  • Dodgson NA (2005) Autostereoscopic 3D displays. Computer 38(8):31–36

    Article  Google Scholar 

  • Druault P, Guibert Ph (2004) Use of turbulent flow statistical properties for correcting erroneous velocity vectors in PIV. CR Mecanique 332(9):731–736

    Article  Google Scholar 

  • Druault P, Guibert P, Alizon F (2005) Use of proper orthogonal decomposition for time interpolation from PIV data. EIF 39:1009–1023

    Google Scholar 

  • Durault Ph, Guibert Ph, Alizon F (2005) Use of proper orthogonal decomposition for time interpolation from PIV data. Exp Fluids 39:1009–1023

    Article  Google Scholar 

  • Ebert D, Musgrave K, Peachey P, Perlin K, Worley S (1998) Texturing and modeling: a procedural approach, 3rd edn. Morgan Kaufmann, San Francisco

    Google Scholar 

  • Elsinga GE (2008) Tomographic particle image velocimetry. Ph.D. Thesis, Department of Aerospace Engineering, Delft University of Technology

  • Elsinga GE, Scarano F, Wieneke B, van Oudheusden BW (2006) Tomographic particle image velocimetry. Exp Fluids 41:933–947

    Article  Google Scholar 

  • Engel K, Hadwiger M, Kniss J, Rezk-Salama C, Weiskopf D (2006) Real-time volume graphics. A.K. Peters Ltd

  • Fuchs R, Peikert R, Hauser H, Sadlo F, Muigg P (2008) Parallel vectors criteria for unsteady flow vortices. VisComput Gr, IEEE 14/3

  • Garcia D (2010) A fast all-in-one method for automated post-processing of PIV data. Exp Fluids. doi:10.1007/s00348-010-0985-y

  • Garth C, Tricoche X, Scheuermann G (2004) Tracking of vector field singularities in unstructured 3D time-dependent data sets. Proceedings of IEEE Visualization 2004, 329–336

  • Garth C, Gerhardt F, Tricoche X, Hagen H (2007) Efficient computation and visualization of coherent structures in fluid flow application. IEEE Trans Vis Comput Graph (Proc. IEEE Visualization), 13(6):1464–1471

    Google Scholar 

  • Green MA, Rowley CW, Haller G (2007) Detection of lagrangian coherent structures in 3D turbulence. J Fluid Mech 572:111–120

    Article  MathSciNet  MATH  Google Scholar 

  • Gunes H, Rist U (2007) Spatial resolution enhancement/smoothing of stereo-particle-image-velocimetry data using proper-orthogonal-decomposition-based and Kriging interpolation methods. Phys Fluids 19

  • Gunes H, Sirisup S, Karniadakis GE (2006) Gappy data: to Krig or not to Krig. J Chem Phys 212

  • Haber RB, McNabb DA (1990) Visualization idioms: a conceptual model for scientific visualization systems. Vis Sci Comput, 75–93

  • Haimes R, Kenwright D (1999) On the velocity gradient tensor and fluid feature extraction. AIAA 14th computational fluid dynamics conference, pp 3288–3297

  • Hain R, Kahler CJ, Tropea C (2007) Comparison of CCD, CMOS and intensified cameras. Exp Fluids 42:403–411

    Article  Google Scholar 

  • Hain R, Kähler CJ, Radespiel R (2009) Principles of a volumetric velocity measurement technique based on optical aberrations. Notes on numerical fluid mechanics and multidisciplinary design, vol 106. Springer, pp 1–10

  • Hairer E, Norsett SP, Wanner G (1993) Solving ordinary differential equations I. Springer, Berlin

    MATH  Google Scholar 

  • Halle M (1997) Autostereoscopic displays and computer graphics. Comput Graph ACM SIGGRAPH 31(2):58–62

    Article  Google Scholar 

  • Haller G (2001) Distinguished material surfaces and coherent structures in three-dimensional fluid flows. Phys D 149:248–277

    Article  MathSciNet  MATH  Google Scholar 

  • Haller G (2002) Lagrangian coherent structures from approximate velocity data. Phys Fluids 14(6):1851–1861

    Article  MathSciNet  Google Scholar 

  • Haller G (2005) An objective definition of a vortex. J Fluid Mech 525:1–26

    Article  MathSciNet  MATH  Google Scholar 

  • Hege H-C, Stalling D (1998) Fast LIC with piecewise polynomial filter kernels. Math Vis Algorithm Appl, 295–314

  • Helman J, Hesselink L (1989) Representation and display of vector field topology in fluid flow data sets. Computer 22(8):27–36

    Article  Google Scholar 

  • Helman JL, Hesselink L (1990) Surface representations of two- and three-dimensional fluid flow topology. IEEE Comput Soc Press, 6–13

  • Helman J, Hesselink L (1991) Visualizing vector field topology in fluid flows. IEEE Comput Graph Appl 11:36–46

    Article  Google Scholar 

  • Herman GT, Lent A (1976) Iterative reconstruction algorithms. Computers in Biology and Medicine 6, Pergamon Press, pp 273–294

  • Hesselink L, Post F, van Wijk JJ (1994) Research issues in vector and tensor field visualization. IEEE Comput Graph Appl 14(2)

  • Hoyer K, Holzner M, Lüthi B, Guala M, Liberzon A, Kinzelbach W (2005) 3D scanning particle tracking velocimetry. Exp Fluids 29:145–153

    Google Scholar 

  • Hultquist JPM (1992) Constructing stream surfaces in steady 3D vector fields. In: Proceedings of IEEE visualization 92, Oct 19–23, Boston, Massachusetts, pp 171–178

  • Hunt JCR, Wray AA, Moin P (1988) Eddies, streams, and convergence zones in turbulent flows. Cent Turbul Res Rep CTR-288:193–208

    Google Scholar 

  • In den Haak M, Spoelder HJW, Groen FCA (1992) Matching of images by using automatically selected regions of interest. Computer Science in the Netherlands’92, 33–39

    Google Scholar 

  • Interrante V, Grosch C (1997) Strategies for effectively visualizing 3D flow with volume LIC. Proceedings of visualization’97, pp 421–424

  • Ishikawa M, Murai Y, Wada A, Iguchi M, Okamoto K, Yamamoto F (2000) A novel algorithm for particle tracking velocimetry using the velocity gradient tensor. Exp Fluids 29:519–531

    Article  Google Scholar 

  • Jeong J, Hussain F (1995) On the identification of a vortex. J Fluid Mech 173:303–356

    MathSciNet  Google Scholar 

  • Jiang M, Machiraju R, Thompson D (2005) Detection and visualization of vortices. The Visualization Handbook, pp 295–309

  • Kalivas DS, Sawchuk AA (1991) A region matching motion estimation algorithm. Comput Vis Graph image process Image underst 54(2):275–288

    MATH  Google Scholar 

  • Kenwright DN (1998) Automatic detection of open and closed separation and attachment lines. Proceedings of Visualization’98, pp 151–158

  • Kenwright DN, Mallinson GD (1992) A 3-D streamline tracking algorithm using dual stream functions. In: Proceedings of IEEE visualization 92, Oct 19–23, Boston, pp 62–68

  • Kenwright DN, Henze C, Levit C (1999) Feature extraction of separation and attachment lines. IEEE Trans Vis Comput Graph 5/2:135–144

    Google Scholar 

  • Kitzhofer J (2011) Volumetric measurements of the transitional backward facing step flow. Dissertation, TU Freiberg, Germany (submitted)

  • Kitzhofer J, Brücker C (2010) Tomographic particle tracking velocimetry using telecentric imaging. Exp Fluids. doi: 10.1007/s00348-010-0879-z

  • Kitzhofer J, Westfeld P, Pust O, Nonn T, Maas HG, Brücker C (2010) Calculation of 3D deformation and rotation rate tensor from volumetric particle data via 3D least squares matching. In: Proceedings of the 15th international symposium on applications of laser techniques to fluid mechanics, 5–8 July 2010, Lisbon (Submitted to special issue)

  • Klassen RV, Harrington SJ (1991) Shadowed hedgehogs: a technique for visualizing 2D slices of 3D vector fields. IEEE Visualization’91, 148–153

    Google Scholar 

  • Kolár V (2007) Vortex identification: new requirements and limitations. Int J Heat Fluid Flow 28:638–652

    Article  Google Scholar 

  • Krishnan H, Garth C, Joy K (2009) Time and streak surfaces for flow visualization in large time-varying data sets. Proceedings of IEEE Visualization ’09, pp 1267–1274

  • Lane DA (1993) Visualization of time-dependent flow fields. In: Proceedings of IEEE visualization 93, Oct 25–29, San Jose, California, pp 32–38

  • Lane DA (1994) UFAT—a particle tracer for time-dependent flow fields. In: Proceedings of IEEE visualization 94, Oct 17–21, Washington, DC, pp 257–264

  • Laramee RS, Gearth C, Schneider J, Hauser H (2006) Texture advection on streamsurfaces: a novel hybrid visualization applied to CFD results. EuroVis2006, Eurographics Association, pp 155–162

  • Laurentini A (1994) How many 2D silhouettes does it take to reconstruct a 3D object? Comput Vis Image Underst 67(1):81–87

    Article  Google Scholar 

  • Li M, Kudo H, Hu J, Johnson RH (2004) Improved iterative algorithm for sparse object reconstruction and its performance evaluation with micro-ct data. IEEE Trans Nucl Sci 51:659–666

    Article  Google Scholar 

  • Li G-S, Tricoche X, Weiskopf D, Hansen CD (2008) Flow charts: visualization of vector fields on arbitrary surfaces. IEEE Trans Vis Comput Graph 14(5):1–14

    Article  Google Scholar 

  • Liang DF, Jiang CB, Li YL (2003) Cellular neural network to detect spurious vectors in PIV data. Exp Fluids 34:52–62

    Google Scholar 

  • Lobutova E, Resagk C, Rank R, Müller D, Putze T, Maas H-G (2007) Investigation of large-scale flow structures in Rayleigh-Bernard convection using 3D particle tracking velocimetry. Symposium Lasermethoden in der Strömungsmesstechnik, Rostock

  • Loffelmann H, Mroz L, Groller E, Purgathofer W (1997) Stream arrows: enhancing the use of stream surfaces for the visualization of dynamical systems. Vis Comput 13(8):359–369

    Article  Google Scholar 

  • Löffelmann H, Mroz L, Gröller E (1997) Hierarchical streamarrows fort he visualization of dynamical systems. 8th EUROGRAPHICS workshop on visualization in scientific computing, pp 155–163

  • Lu W, Yin F (2004) Adaptive algebraic reconstruction technique. Med Phys 31:3222–3230

    Article  Google Scholar 

  • Lu J, Fugal JP, Nordsiek H, Saw EW, Shaw RA, Yang W (2008) Lagrangian particle tracking in three dimensions via single-camera in-line digital holography. New J Phys 10:24

    Google Scholar 

  • Lumley JL (1967) The structure of inhomogeneous turbulent flows. In: Yaglom AM, Tatarsky VI (eds) Proceedings of Atmospheric turbulence and radio wave propagation. Nauka, Moscow, pp 166–178

    Google Scholar 

  • Lüthi B, Tsinoba A, Kinzelbach W (2005) Lagrangian measurement of vorticity dynamics in turbulent flow. J Fluid Mech 528:87–118

    Article  MATH  Google Scholar 

  • Maas HG (1992) Digitale photogrammetrie in der dreidimensionalen Strömungsmesstechnik. Ph.D. Thesis, ETH Zürich

  • Maas HG, Stefanidis A, Grün A (1994) From pixels to voxels—tracking volume elements in sequences of 3-d digital images. Int Arch Photogramm Remote Sens 30(3/2)

  • Maas HG, Westfeld P, Putze T., Botkjaer N, Kitzhofer J, Brücker C (2009) Photogrammetric techniques in multi-camera tomographic PIV. In: Proceedings of the 8th international symposium on particle image velocimetry, Melbourne

  • Malik NA, Dracos T (1995) Interpolation schemes for three-dimensional velocity fields from scattered data using Taylor expansions. J Comput Phys 119:231–243

    Article  MathSciNet  MATH  Google Scholar 

  • Malik N, Dracos T, Papantoniou D (1993) Particle tracking in three dimensional turbulent flows—part II: particle tracking. Exp Fluids 15:279–294

    Article  Google Scholar 

  • Malkiel E, Sheng J, Katz J, Strickler JR (2003) The three-dimensional flow field generated by a feeding calanoid copepod measured using digital holography. J Exp Bio 206:3657–3666

    Article  Google Scholar 

  • Mattausch O, Theußl T, Hauser H, Gröller E (2003) Strategies for interactive exploration of 3D flow using evenly-spaced illuminated streamlines. In: Proceedings of the 19th spring conference on computer graphics, pp 213–222

  • McLoughlin T, Laramee RS, Peikert R, Post FH, Chen M (2009) Over two decades of integration-based, geometric flow visualization. Eurographics 2009 STAR report

  • McLoughlin T, Laramee RS, Peikert R, Post FH, Chen M (2010) Over two decades of integration-based, geometric flow visualization. Computer graphics (in print)

  • Meng H, Hussain F (1995) In-line recording and off-axis viewing technique for holographic particle velocimetry. Appl Opt 34:1827–1840

    Article  Google Scholar 

  • Morris SC (2010) Shear-layer instabilities: particle image velocimetry measurements and implications for acoustics. Annu Rev Fluid Mech 2011.43

  • Mullin JA, Dahm WJA (2006) Dual-plane stereo particle image velocimetry measurements of velocity gradient tensor fields in turbulent shear flow II. Experimental results. Phys Fluids 18:035102

    Article  Google Scholar 

  • Nie JH, Armaly BF (2003) Reattachment of three-dimensional flow adjacent to backward-facing step. Trans ASME 125:422–428

    Article  Google Scholar 

  • NozickV, Saito H (2007) Multiple view computation for multi-stereoscopic display. In: IEEE Pacific-rim symposium on image amd video technology (PSIVT 2007), vol 4872, pp 399–412

  • Okamoto K, Hassan YA, Schmidl WD (1995) New tracking algorithm for particle image velocimetry. Exp Fluids 19:342–347

    Article  Google Scholar 

  • Ouelette NT, Xu H, Bodenschatz E (2006) A quantitative study of three-dimensional Lagrangian particle tracking algorithms. Exp Fluids 40:301–313

    Google Scholar 

  • Pagendarm H-G, Walter B (1994) Feature detection from vector quantities in a numerically simulated hypersonic flow field in combination with experimental flow visualization. IEEE Comput Soc Press, 117–123

  • Palero V, Arroyo MP, Soria J (2001) Digital in-line holographic PIV for 3D particulate flow diagnostics. In: Proceedings of 4th international symposium on particle image velocimetry, Göttingen

  • Pan G, Meng H (2003) Digital holography of particle fields: reconstruction by use of complex amplitude. Appl Opt 42:827–833

    Article  Google Scholar 

  • Peikert R, Rozh M (1999) The “Parallel Vectors” operator—a vector field visualization primitive. Proceedings of IEEE Visualization ’99, pp 263–270

  • Peikert R, Sadlo F (2009) A robust stream surface method for the visualization of vector field singularities. Comput Graph Geom 11(2):2–13

    Google Scholar 

  • Pereira F, Gharib M (2002) Defocusing digital particle image velocimetry and the three-dimensional characterization of two-phase flows. Meas Sci Technol 13:683–694

    Article  Google Scholar 

  • Perry A, Chong M (1994) Topology of flow patterns in vortex motions and turbulence. Appl Sci Res 53:357–374

    Article  MATH  Google Scholar 

  • Pobitzer A, Peikert R, Fuchs R, Schindler B, Kuhn A, Theisel H, Matkovic K, Hauser H (2010) On the way towards topology based visualization of unsteady flow—the state of the art. In: Proceedings of EuroGraphics 2010 state of the art reports

  • Post F, van Walsum T (1995) Iconic techniques for feature visualization. IEEE Visualization’95, 288–295

    Google Scholar 

  • Post FH, Vrolijk B, Hauser H, Laramee RS, Doleisch H (2002) Feature Extraction and Visualization of Flow Fields. Eurographics 2002 STAR

  • Post FH, Vrolijk B, Hauser H, Laramee RS, Doleisch H (2003) The state of the art in flow visualization. Feature extraction and tracking. Comput Graph Forum 22(4):775–792

    Article  Google Scholar 

  • Pothos S, Troolin D, Lai W, Menon R (2009) V3 V—volumetric three-component velocimetry for 3D flow measurements—main principle, theory and applications. Revista Termotehnica 2/2009

  • Pu Y, Meng H (2005) Four-dimensional dynamic flow measurement by holographic particle image velocimetry. Appl Opt 44:7697–7708

    Article  Google Scholar 

  • Pun CS, Susanto A, Dabiri D (2007) Mode-ratio bootstrapping method for PIV outlier correction. Meas Sci Technol 18:3511–3522

    Article  Google Scholar 

  • Putze T (2008) Geometrische und stochastische Modelle zur Optimierung der Leistungsfähigkeit des 3D PTV. Ph.D. Thesis, Fakultät Forst-, Geo- und Hydro-wissenschaften, Dresden University of Technology

  • Raffel M, Gharib M, Ronneberger O, Kompenhans J (1995) Feasibility study of three-dimensional PIV by correlating images of particles within parallel light sheet planes. Exp Fluids 19:69–77

    Article  Google Scholar 

  • Raffel M, Westerweel J, Willert C, Gharib M, Kompenhans J (1996) Analytical and experimental investigations of dual-plane particle image velocimetry. Opt Eng 35:2067–2074

    Article  Google Scholar 

  • Raffel M, Willert C, Wereley S, Kompenhans J (2007) Post-processing of PIV data in particle image velocimetry. A practical guide. Springer, Berlin, pp 177–208

  • Reinders F, Post FH, Spoelder HJW (2001) Visualization of time-dependent data using feature tracking and event detection. Vis Comput 17(1):55–71

    Article  MATH  Google Scholar 

  • Robinson O, Rockwell D (1993) Construction of three-dimensional images of flow structure via particle tracking techniques. Exp Fluids 14:257–270

    Article  Google Scholar 

  • Sadlo F, Peikert R (2007) Efficient visualization of lagrangian coherent structures by filtered AMR ridge extraction. Trans Vis Comput Graph 13(6):1456–1463

    Article  Google Scholar 

  • Sadlo F, Weiskopf D (2010) Time-dependent 2-D vector field topology: An approach inspired by lagrangian coherent structures. Comput Graph Forum 29:88–100

    Article  Google Scholar 

  • Sahner J, Weinkauf T, Teuber N, Hege HC (2007) Vortex and strain skeletons in eulerian and lagrangian frames. IEEE Trans Vis Comput Graph 13(5)

  • Samtaney R, Silver D, Zabusky N, Cao J (1994) Visualizing features and tracking their evolution. IEEC 27(7):20–27

    Google Scholar 

  • Sanna A, Montrucchio B, Montuschi P (2000) A survey on visualization of vector fields by texture-based methods. Recent Res Dev Pattern Recognit 1(1):13–27

    Google Scholar 

  • Scarano F, Moore P (2010) An advection model to increase the time-resolution of PIV time-series. In: Proceedings of 15th international symposium on applications of laser technoques to fluid mechanics, Lisbon

  • Scarano F, Poelma C (2009) Three-dimensional vorticity patterns of cylinder wakes. Exp Fluids 47:69–83

    Article  Google Scholar 

  • Scarano F, Riethmuller ML (2000) Advances in iterative multigrid PIV image processing. Exp Fluids 29:S51–S60

    Article  Google Scholar 

  • Schafhitzel T, Tejada E, Weiskopf D, Ertl T (2007) Point-based stream surfaces and path surfaces. Proceedings of graphics interface 2007, pp 289–296

  • Schafhitzel T, Baysal K, Vaaraniemi M, Rist U, Weiskopf D (2010) Visualizing the evolution and interaction of vortices and shear layers in time-dependent 3D flow. IEEE Trans Vis Comput Graph (To appear)

  • Schiwietz T, Westermann R (2004) GPU-PIV, VMV

  • Schnars U, Juptner WP (1994) Direct recording of holograms by a CCD target and numerical reconstruction. Appl Opt 33:179–181

    Article  Google Scholar 

  • Schnars U, Jüptner PO (2002) Digital recording and numerical reconstruction of holograms. Meas Sci Technol 13:85–101

    Article  Google Scholar 

  • Schreer O (2005) Stereoanalyse und Bildsynthese. Springer, Berlin

    Google Scholar 

  • Schröder A, Geisler R, Staack K, Elsinga GE, Scarano F, Wieneke B, Henning A, Poelma C, Westerweel J (2011) Eulerian and Lagrangian views of a turbulent boundary layer flow using time-resolved tomographic PIV. Exp Fluids 50:1071–1091

    Article  Google Scholar 

  • Schroeder WJ, Volpe CR, Lorensen WE (1991) The stream polygon: a technique for 3D vector field visualization. In: Proceedings of IEEE visualization 91, Oct 22–25, San Diego, pp 126–132

  • Shadden S, Lekien F, Marsden J (2005) Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Phys D Nonlinear Phenom 212:271–304

    Article  MathSciNet  MATH  Google Scholar 

  • Shen H-W, Kao DL (1997) UFLIC: a line integral convolution algorithm for visualizing unsteady flows. Proceedings visualization’97, pp 317–322

  • Shepard D (1968) A two-dimensional interpolation function for irregularly-spaced data. In: Proceedings of the 1968 ACM national conference, pp 517–524

  • Sirovich L (1987) Turbulence and the dynamics of coherent structures. Part I: coherent structures. Q Appl Math XLV:561–571

    MathSciNet  Google Scholar 

  • Soria J, Atkinson C (2008) Towards 3C–3D digital holographic fluid velocity vector field measurement—tomographic digital holographic PIV. Meas Sci Technol 19:12

    Article  Google Scholar 

  • Strawn RC, Kenwright DN, Ahmad J (1999) Computer visualization of vortex wake systems. AIAA J 37(4):511–512

    Article  Google Scholar 

  • Stuer H, Blaser S (2000) Interpolation of scattered 3D PTV data to a regular grid. Flow Turbul Combust 64:215–232

    Article  Google Scholar 

  • Surana A, Grunberg O, Haller G (2006) Exact theory of three-dimensional flow separation. Part1. Steady separation. J Fluid Mech 564:57–103

    Article  MathSciNet  MATH  Google Scholar 

  • Surana A, Jacobs G, Grunberg O, Haller G (2008) Exact theory of three-dimensional fixed unsteady separation. Phys Fluids 20(1–22)

    Google Scholar 

  • Telea A, van Wijk J (2003) 3D IBFV: hardware-accelerated 3D flow visualization. IEEE visualization ’03

  • Theisel H, Seidel HP (2003) Feature flow fields. In: Proceedings of joint eurographics—IEEE TCVG symposium on visualization (VisSym’03)

  • Theisel H, Weinkauf T, Hege HC, Seidel HP(2003) Saddle connectors—an approach to visualizing the topological skeleton of complex 3D vector fields. In: Proceedings of IEEE visualization 2003, Seattle

  • Theisel H, Sahner J, Weinkauf T, Hege H-C, Seidel HP (2005) Extraction of parallel vector surfaces in 3D time-dependent fields and applications to vortex core line tracking. Proceedings of IEEE visualization 2005

  • Trolinger JD, Belz RA, Farmer WM (1969) Holographic techniques for the study of dynamic particle fields. Appl Opt 8:957–961

    Article  Google Scholar 

  • Ueng S-K, Sikorski C, Ma K-L (1996) Efficient streamline, streamribbon, and streamtube constructions on unstructured grids. IEEE Trans Vis Comput Graph 2(2):100–110

    Article  Google Scholar 

  • Upson C, Faulhaber T, Kamins D, Laidlaw D, Schlegel D, Vroom J, Gurwitz R, van Dam A (1998) The application visualization system: a computational environment for scientific visualization. IEEE Comput Graph Appl 9(4):30–42

    Article  Google Scholar 

  • van Walsum T, Post FH, Silver D, Post FJ (1996) Feature extraction and iconic visualization. IEEE TVCG 2(2):111–119

    Google Scholar 

  • van Wijk JJ (1991) Spot noise texture synthesis for data visualization. Comput Graph 91:309–318

    Google Scholar 

  • Venugopal V, Patterson C, Shinpaugh K (2009) Accelerating particle image velocimetry using hybrid architectures. Symposium on application accelerators in high performance computing

  • Wegenkittl R, Gröller E (1997) Fast oriented line integral convolution for vector field visualization. Proceedings of visualization’97, 309–316

  • Weinkauf T, Theisel H (2010) Streak lines as tangent curves of a derived vector field. IEEE Trans Vis Comput Graph16(6) (Vis 2010 Best Paper Award)

  • Westerweel J, Scarano F (2005) Universal outlier detection for PIV data. Exp Fluids 39:1096–1100

    Article  Google Scholar 

  • Willert CE, Gharib M (1992) Three-dimensional particle imaging with a single camera. Exp Fluids 12:353–358

    Article  Google Scholar 

  • Willert C, Stasicki B, Klinner J, Moessner S (2010) Pulsed operation of high-power light emitting diodes for imaging flow velocimetry. Meas Sci Technol 21:11

    Article  Google Scholar 

  • Willneff J (2003) A spatio-temporal matching algorithm for 3D particle tracking velocimetry. ETH Zürich—Dissertation Nr. 15276

  • Wu JZ, Gu JW, Wu JM (1987) Steady three-dimensional fluid particle separation from arbitrary smooth surface and formation of free vortex layers. AIAA Paper 87-2348

  • Xu H (2008) Tracking Lagrangian trajectories in position-velocity space. Meas Sci Technol 19:10

    Google Scholar 

  • Yamamoto F, Uemura T, Iguchi M, Ohta J, Wada A, Mori K (1993) §DPTV based on binary image correlations method and its applications to a mixing flow with a bubbling jet. In: Brebbia CA, Carlomagno GM (eds) Computational methods and experimental measurements, vol 6. Springer, Berlin, pp 229–246

    Google Scholar 

  • Zhou J, Adrian RJ, Balachandar S, Kendall TM (1999) Mechanism for generating coherent packets of hairpin vortices in channel flow. J Fluid Mech 387:353–396

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu Y, Zhen T (2009) 3D multi-view autostereoscopic display and its key technologie. apcip, Asia-pacific conference on information processing, 2009, vol 2, pp 31–35

  • Zöckler M, Stalling D, Hege H (1996) Parallel line integral convolution.In: Proceedings first eurographics workshop on parallel graphic and visualization, pp 249–256

Download references

Acknowledgments

The authors are not aware of any biases that might be perceived as affecting the objectivity of the review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kitzhofer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitzhofer, J., Nonn, T. & Brücker, C. Generation and visualization of volumetric PIV data fields. Exp Fluids 51, 1471–1492 (2011). https://doi.org/10.1007/s00348-011-1176-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-011-1176-1

Keywords

Navigation