Skip to main content

Recent Developments of PIV towards 3D Measurements

  • Chapter
Particle Image Velocimetry

Part of the book series: Topics in Applied Physics ((TAP,volume 112))

Abstract

This chapter reviews the different techniques that have been proposed in the last few years for turning PIV into a 3D velocimetry technique. Any technique capable of simultaneously measuring more than one plane is included. In expanding normal-viewing PIV depth increases from dual-plane PIV, multiple-plane PIV in its version of digital image plane holography to adjustable-depth volume PIV methods like defocus-evaluating PIV, tomographic PIV, and off-axis holography. Other volume holographic setups utilize reusable real-time recording material (polarization multiplexing with bacteriorhodopsin), explore digital in-line holography and promise extensions to even deeper volumes (light-in-flight holography). The principles, the present state-of-the-art and some ideas on future developments are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • C. Br{ü}cker: {3-D} scanning-particle-image-velocimetry: {Technique} and application to a spherical cap wake flow, Appl. Sci. Res. 56, 157–179 (1996)

    Article  Google Scholar 

  • T. Hori, J. Sakakibara: High-speed scanning stereoscopic {PIV} for {3D} vorticity measurement in liquids, Meas. Sci. Technol. 15, 1067–1078 (2004)

    Article  ADS  Google Scholar 

  • C. J. K{ä}hler, J. Kompenhans: Fundamentals of multiple plane stereo particle image velocimetry, Exp. Fluids, Suppl. pp. S70–S77 (2000)

    Google Scholar 

  • H. Hu, T. Saga, T. Kobayashi, N. Taniguchi, M. Yasuki: Dual-plane stereoscopic particle image velocimetry: {System} set-up and its application on a lobed jet mixing flow, Exp. Fluids 31, 277–293 (2001)

    Article  Google Scholar 

  • B. Ganapathisubramani, E. K. Longmire, I. Marusic, S. Pothos: Dual-plane {PIV} technique to determine the complete velocity gradient tensor in a turbulent boundary layer, Exp. Fluids 39, 222–231 (2005)

    Article  Google Scholar 

  • J. A. Mullin, W. J. A. Dahm: Dual-plane stereo particle image velocimetry {(DSPIV)} for measuring velocity gradient fields at intermediate and small scales of turbulent flows, Exp. Fluids 38, 185–196 (2005)

    Article  Google Scholar 

  • J. A. Mullin, W. J. A. Dahm: Dual-plane stereo particle image velocimetry measurements of velocity gradient tensor fields in turbulent shear flow {I}. {Accuracy} assessments, Phys. Fluids 18, 035101 (2006)

    Article  ADS  Google Scholar 

  • J. A. Mullin, W. J. A. Dahm: Dual-plane stereo particle image velocimetry measurements of velocity gradient tensor fields in turbulent shear flow {II}. {Experimental} results, Phys. Fluids 18, 035102 (2006)

    Article  ADS  Google Scholar 

  • C. J. K{ä}hler: Investigation of the spatio-temporal flow structure in the buffer region of a turbulent boundary layer by means of multiplane stereo{PIV}, Exp. Fluids 36, 114–130 (2004)

    Article  Google Scholar 

  • A. Schr{ö}eder, J. Kompenhans: Investigation of a turbulent spot using multi-plane stereo particle image velocimetry, Exp. Fluids 36, 82–90 (2004)

    Article  Google Scholar 

  • N. Saikrishnan, I. Marusic, E. K. Longmire: Assessment of dual plane {PIV} measurements in wall turbulence using {DNS} data, Exp. Fluids 41, 265–278 (2006)

    Article  Google Scholar 

  • A. Liberzon, R. Gurka, G. Hetsroni: {XPIV}-multi-plane stereoscopic particle image velocimetry, Exp. Fluids 36, 355–362 (2004)

    Article  Google Scholar 

  • M. P. Arroyo, K. von Ellenrieder, J. Lobera, J. Soria: Measuring {3-C} velocity fields in a {3-D} flow domain by holographic {PIV} and holographic interferometry, in 4th Int. Symp. on Particle Image Velocimetry (2001)

    Google Scholar 

  • J. Lobera, N. Andr{\'e}s, M. P. Arroyo: Digital image plane holography as a three-dimensional flow velocimetry technique, SPIE 4933, 279–284 (2003)

    Article  ADS  Google Scholar 

  • J. Lobera, N. Andr{\'e}s, M. P. Arroyo: From {ESPI} to digital image plane holography {(DIPH)}: {Requirements}, possibilities and limitations for velocity measurements in a {3-D} volume, in M. Stanislas, J. Westerweel, J. Kompenhans (Eds.): Particle Image Velocimetry: Recent Improvements (Springer, Berlin, Heidelberg 2004) pp. 363–372

    Google Scholar 

  • J. Lobera, N. Andr{\'e}s, M. P. Arroyo: Digital speckle pattern velocimetry as a holographic velocimetry technique, Meas. Sci. Technol. 15, 718–724 (2004)

    Article  ADS  Google Scholar 

  • M. P. Arroyo, J. Lobera, S. Recuero, J. Woisetschl{ä}ger: Digital image plane holography for three-component velocity measurements in turbomachinery flows, in 13th Int. Sym. on Applications of Laser Techniques to Fluid Mechanics (2006)

    Google Scholar 

  • R. Hain, C. J. K{ä}hler: {3D3C} time-resolved measurements with a single camera using optical aberrations, in 13th Int. Symp. on Applications of Laser Techniques to Fluid Mechanics (2006)

    Google Scholar 

  • N. Angarita-Jaimes, E. McGhee, M. Chennaoui, H. I. Campbell, S. Zhang, C. E. Towers, A. H. Greenaway, D. P. Towers: Wavefront sensing for single view three-component three-dimensional flow velocimetry, Exp. Fluids 41, 881–891 (2006)

    Article  Google Scholar 

  • F. Pereira, M. Gharib, D. Dabiri, M. Modarress: Defocusing {PIV}: {A} three component {3-D} {PIV} measurement technique. {Application} to bubbly flows, Exp. Fluids 29, S78–S84 (2000)

    Article  Google Scholar 

  • F. Pereira, M. Gharib: Defocusing digital particle image velocimetry and the three-dimensional characterization of two-phase flows, Meas. Sci. Technol. 13, 683–69 (2002)

    Article  ADS  Google Scholar 

  • L. Kajitani, D. Dabiri: A full three-dimensional characterization of defocusing digital particle image velocimetry, Meas. Sci. Technol. 16, 790–804 (2005)

    Article  ADS  Google Scholar 

  • C. E. Willert, M. Gharib: Three-dimensional particle imaging with a single camera, Exp. Fluids 12, 353–358 (1992)

    Article  Google Scholar 

  • J. Willneff, A. Gr{ü}n: A new spatio-temporal matching algorithm for {3D}-particle tracking velocimetry, in 9th Intl. Symp. Transport Phenomena and Dynamics of Rotating Machinery (2002)

    Google Scholar 

  • B. Ruck: Color-coded tomography, in 7th Int. Symp. on Fluid Control, Measurement and Visualization (2003)

    Google Scholar 

  • G. E. Elsinga, F. Scarano, B. Wienecke, B. W. Oudheusden: Tomographic particle image velocimetry, Exp. Fluids 41, 933–947 (2006)

    Article  Google Scholar 

  • H. G. Maas, A. Gruen, D. Papantoniou: Particle tracking velocimetry in three-dimensional flows. {Part} 1. {Photogrammetric} determination of particle coordinates, Exp. Fluids 15, 133–146 (1993)

    Article  Google Scholar 

  • G. E. Elsinga, B. W. van Oudheusden, F. Scarano: Experimental assessment of tomographic-{PIV} accuracy, in 13th Int. Symp. on Applications of Laser Techniques to Fluid Mechanics (2006)

    Google Scholar 

  • G. E. Elsinga, B. Wienecke, F. Scarano, B. W. van Oudheusden: Assessment of tomo-{PIV} for three-dimensional flows, in 6th Int. Symp. on Particle Image Velocimetry (2005)

    Google Scholar 

  • B. Wieneke, S. Taylor: Fat-sheet {PIV} with computation of full {3D}-strain tensor using tomographic reconstruction, in 13th Int. Symp. on Applications of Laser Techniques to Fluid Mechanics (2006)

    Google Scholar 

  • F. Scarano, G. E. Elsinga, E. Bocci, B. W. van Oudheusden: Investigation of {3-D} coherent structures in the turbulent cylinder wake using tomo-{PIV}, in 13th Int. Symp. on Applications of Laser Techniques to Fluid Mechanics (2006)

    Google Scholar 

  • A. Schr{ö}der, R. Geisler, G. E. Elsinga, F. Scarano, U. Dierksheide: Investigation of a turbulent spot using time-resolved tomographic {PIV}, in 13th Int. Symp. on Applications of Laser Techniques to Fluid Mechanics (2006)

    Google Scholar 

  • Y. Pu, H. Meng: An advanced off-axis holographic particle image velocimetry system, Exp. Fluids 29, 184–197 (2000)

    Article  Google Scholar 

  • Y. Pu, X. Song, H. Meng: Off-axis holographic particle image velocimetry for diagnosing particulate flows, Exp. Fluids 29, S117–S128 (2000)

    Article  Google Scholar 

  • K. D. Hinsch: Holographic particle image velocimetry, Meas. Sci. Technol. 13, R61–R72 (2002)

    Article  ADS  Google Scholar 

  • Y. Pu, H. Meng: Intrinsic aberrations due to {M}ie scattering in particle holography, J. Opt. Soc. Am. A 20, 1920–1932 (2003)

    Article  ADS  Google Scholar 

  • Y. Pu, H. Meng: Intrinsic speckle noise in off-axis particle holography, J. Opt. Soc. Am. A 21, 1221–1230 (2004)

    Article  ADS  Google Scholar 

  • Y. Pu, H. Meng: Four-dimensional dynamic flow measurement by holographic particle image velocimetry, Appl. Opt. 44, 7697–7708 (2005)

    Article  ADS  Google Scholar 

  • C. T. Yang, H. S. Chuang: Measurement of a microchamber flow by using a hybrid multiplexing holographic velocimetry, Exp. Fluids 39, 385–396 (2005)

    Article  Google Scholar 

  • H. Yang, N. Halliwell, J. M. Coupland: Application of the digital shearing method to extract three-component velocity in holographic particle image velocimetry, Meas. Sci. Technol. 15, 694–698 (2004)

    Article  ADS  Google Scholar 

  • J. Zhang, B. Tao, J. Katz: Turbulent flow measurement in a square duct with hybrid holographic {PIV}, Exp. Fluids 23, 373–381 (1997)

    Article  Google Scholar 

  • B. Tao, J. Katz, C. Meneveau: Statistical geometry of subgrid-scale stresses determined from holographic particle image velocimetry measurements, J. Fluid Mech. 457, 35–78 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • A. Svizher, J. Cohen: Holographic particle image velocimetry system for measurements of hairpin vortices in air channel flows, Exp. Fluids 40, 708–722 (2006)

    Article  Google Scholar 

  • J. Sheng, E. Malkiel, J. Katz: Single beam two-views holographic particle image velocimetry, Appl. Opt. 42, 235–250 (2003)

    Article  ADS  Google Scholar 

  • D. H. Barnhart, N. Hampp, N. A. Halliwell, J. M. Coupland: Digital holographic velocimetry with bacteriorhodopsin {(BR)} for real-time recording and numeric reconstruction, in 11th Int. Symp. on Applications of Laser Techniques to Fluid Mechanics (2002)

    Google Scholar 

  • D. H. Barnhart, W. D. Koek, T. Juchem, N. Hampp, J. M. Coupland, N. A. Halliwell: Bacteriorhodopsin as a high-resolution, high-capacity buffer for digital holographic measurements, Meas. Sci. Technol. 15, 639–646 (2004)

    Article  ADS  Google Scholar 

  • V. S. S. Chan, W. D. Koek, D. Barnhart, C. Poelma, T. A. Ooms, N. Bhattacharya, J. J. M. Braat, J. Westerweel: {HPIV} using polarization multiplexing holography in bacteriorhodopsin {(BR)}, in 12th Int. Symp. on Applications of Laser Techniques to Fluid Mechanics (2004)

    Google Scholar 

  • T. Ooms, J. Braat, J. Westerweel: Optimizing a holographic {PIV} system using a bacteriorhodopsin film, in 13th Int. Symp. on Applications of Laser Techniques to Fluid Mechanics (2006)

    Google Scholar 

  • W. D. Koek: Holographic Particle Image Velocimetry using Bacteriorhodopsin, {PhD} dissertation, Delft Univ. (2006)

    Google Scholar 

  • V. S. S. Chan, W. D. Koek, D. H. Barnhart, N. Bhattacharya, J. J. M. Braat, J. Westerweel: Application of holography to fluid flow measurements using bacteriorhodopsin (br), Meas. Sci. Technol. 15, 647–655 (2004)

    Article  ADS  Google Scholar 

  • W. D. Koek, N. Bhattacharya, J. M. Braat, V. S. S. Chan, J. Westerweel: Holographic simultaneous readout polarization multiplexing based on photoinduced anisotropy in bacteriorhodopsin, Opt. Lett. 29, 101–103 (2004)

    Article  ADS  Google Scholar 

  • J. M. Coupland: Holographic particle image velocimetry: {Signal} recovery from under-sampled {CCD} data, Meas. Sci. Technol. 15, 711–717 (2004)

    Article  ADS  Google Scholar 

  • W. D. Koek, N. Bhattacharya, J. M. M. Braat, T. A. Ooms, J. Westerweel: Influence of virtual images on the signal-to-noise ratio in digital in-line particle holography, Opt. Exp. 13, 2578–2589 (2005)

    Article  ADS  Google Scholar 

  • T. Ooms, W. Koek, J. Braat, J. Westerweel: Optimizing {F}ourier filtering for digital holographic particle image velocimetry, Meas. Sci. Technol. 17, 304–312 (2006)

    Article  ADS  Google Scholar 

  • U. Schnars, W. P. O. J{ü}ptner: Digital recording and numerical reconstruction of holograms, Meas. Sci. Technol. 13, R85–R101 (2002)

    Article  ADS  Google Scholar 

  • Y. Awatsuji, A. Fujii, T. Kubota, O. Matoba: Parallel three-step phase-shifting digital holography, Appl. Opt. 45, 2995–3002 (2006)

    Article  ADS  Google Scholar 

  • H. Meng, G. Pan, Y. Pu, S. H. Woodward: Holographic particle image velocimetry: {From} film to digital recording, Meas. Sci. Technol. 15, 673–685 (2004)

    Article  ADS  Google Scholar 

  • W. Xu, M. H. Jericho, I. A. Meinertzhagen, H. J. Kreuzer: Digital in-line holography of microspheres, Appl. Opt. 41, 5367–5375 (2002)

    Article  ADS  Google Scholar 

  • W. Xu, M. H. Jericho, H. J. Kreuzer, I. A. Meinertzhagen: Tracking particles in four dimensions with in-line holographic microscopy, Opt. Lett. 28, 164–166 (2003)

    Article  ADS  Google Scholar 

  • G. Pan, H. Meng: Digital holography of particle fields: reconstruction by the use of complex amplitude, Appl. Opt. 42, 827–833 (2003)

    Article  ADS  Google Scholar 

  • S. Kim, S. J. Lee: Digital holographic {PTV} measurements of a vertical jet flow, in 6th Int. Symp. on Particle Image Velocimetry (2005)

    Google Scholar 

  • E. Malkiel, J. Sheng, J. Katz, J. R. Strickler: The three-dimensional flow field generated by a feeding calanoid copepod measured using digital holography, J. Exp. Bio. 206, 3657–3666 (2003)

    Article  Google Scholar 

  • C. Fournier, C. Ducottet, T. Fournel: Digital in-line holography: influence of the reconstruction function on the axial profile of a reconstructed particle image, Meas. Sci. Technol. 15, 686–693 (2004)

    Article  ADS  Google Scholar 

  • W. Yang, A. B. Kostinski, R. A. Shaw: Depth-of-focus reduction for digital in-line holography of particle fields, Opt. Lett. 30, 1303–1305 (2005)

    Article  ADS  Google Scholar 

  • S. Satake, T. Kunugi, K. Sato, T. Ito, H. Kanamori, J. Taniguchi: Measurements of {3D} flow in a micro-pipe via micro digital holographic particle tracking velocimetry, Meas. Sci. Technol. 17, 1647–1651 (2006)

    Article  ADS  Google Scholar 

  • C. Buraga-Lefevre, S. Co{\"e}tmellec, D. Lebrun, C. Özkul: Application of wavelet transform to hologram analysis: {Three}-dimensional location of particles, Opt. Lasers Eng. 33, 409–421 (2000)

    Article  Google Scholar 

  • S. Co{\"e}tmellec, C. Buraga-Lefevre, D. Lebrun, C. Özkul: Application of in-line digital holography to multiple plane velocimetry, Meas. Sci. Technol. 12, 1392–1397 (2001)

    Article  ADS  Google Scholar 

  • M. Malek, D. Allano, S. Co{\"e}tmellec, D. Lebrun: Digital in-line holography: {Influence} of the shadow density on particle field extraction, Opt. Exp. 12, 2270–2279 (2004)

    Article  ADS  Google Scholar 

  • M. Malek, D. Allano, S. Co{\"e}tmellec, C. Özkul, D. Lebrun: Digital in-line holography for three-dimensional-two-components particle tracking velocimetry, Meas. Sci. Technol. 15, 699–705 (2004)

    Article  ADS  Google Scholar 

  • S. Co{\"e}tmellec, D. Lebrun, C. Özkul: Application of the two-dimensional fractional-order fourier transformation to particle field digital holography, J. Opt. Soc. Am. A 19, 1537–1546 (2002)

    Article  ADS  Google Scholar 

  • S. Murata, N. Yasuda: Potential of digital holography in particle measurement, Opt. Las. Technol. 32, 567–574 (2000)

    Article  ADS  Google Scholar 

  • W. Yang, A. B. Kostinski, R. A. Shaw: Phase signature for particle detection with digital in-line holography, Opt. Lett. 31, 1399–1401 (2006)

    Article  ADS  Google Scholar 

  • G. Shen, R. Wei: Digital holography particle image velocimetry or the {3D}t-{3C} flows, in 5th International Symposium on Particle Image Velocimetry. Busan. Korea, September 22–25 (2003)

    Google Scholar 

  • S. F. Hermann, K. D. Hisch: Light-in-flight holographic particle image velocimetry for wind-tunnel application, Meas. Sci. Technol. 15, 613–621 (2004)

    Article  ADS  Google Scholar 

  • S. F. Hermann, K. D. Hinsch: Advances in light-on-flight {HPIV} for the study of wind tunnel flows, in M. Stanislas, J. Westerweel, J. Kompenhans (Eds.): Particle Image Velocimetry: Recent Improvements (Springer, Berlin, Heidelberg 2004) pp. 317–331

    Google Scholar 

  • K. D. Hinsch, S. F. Hermann: Signal quality improvements by short-coherence holographic particle image velocimetry, Meas. Sci. Technol. 15, 622–630 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pilar Arroyo .

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Arroyo, M.P., Hinsch, K.D. (2007). Recent Developments of PIV towards 3D Measurements. In: Particle Image Velocimetry. Topics in Applied Physics, vol 112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73528-1_7

Download citation

Publish with us

Policies and ethics