Skip to main content
Log in

Ectopic Expression of Riboflavin-binding Protein Gene TsRfBP Paradoxically Enhances Both Plant Growth and Drought Tolerance in Transgenic Arabidopsis thaliana

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Riboflavin is the precursor of the coenzymes flavin monophosphate (FMN) and flavin adenine dinucleotide (FAD), which serve as indispensable redox cofactors in all plants. Numerous data indicate that riboflavin is involved in pathogen resistance but less data are available on abiotic stress tolerance. In this experiment, the overexpression of the riboflavin-binding protein resulted in an enhancement of vegetative growth and net photosynthetic rate, and an acceleration of floral transition in transgenic Arabidopsis thaliana REAT11 (containing less than half the normal levels of free riboflavin, FMN, and FAD) compared to wild-type Col-0 under nonstressed conditions. The effect of drought stress on the antioxidant response of Col-0 and REAT11 was compared, where 20- and 40-day-old grown plants were subjected to 10 % PEG 6000 treatment for 2 days. Stress conditions caused a significant increase in H2O2 accumulation, lipid peroxidation, and membrane permeability in Col-0 over that in REAT11. Greater activity levels of superoxide dismutase, ascorbate peroxidase, and glutathione reductase were observed in the leaves of REAT11 compared to those of Col-0. Significant increases in total ascorbate and glutathione content and higher ratios of ASC/DHA: (ASC and DHA are reduced and oxidized ascorbate, respectively) and GSH/GSSG: (GSH and GSSG are reduced and oxidized glutathione, respectively) were observed in the leaves of REAT11 compared to those in Col-0 under drought conditions. In addition, enhancement of free proline and soluble sugar accumulation was observed in REAT11 compared to Col-0 under stress. Our results suggest that a slight deficiency in free riboflavin can paradoxically induce both a higher vegetative growth rate and an enhanced tolerance to drought in transgenic plants. The “stress escape” hypothesis is proposed here to explain this interesting phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    Article  PubMed  CAS  Google Scholar 

  • Attolico AD, De Tullio MC (2006) Increased ascorbate content delays flowering in long-day grown Arabidopsis thaliana (L.) Heynh. Plant Physiol Biochem 44:462–466

    Article  PubMed  CAS  Google Scholar 

  • Azami-Sardooei Z, França SC, De Vleesschauwer D, Höfte M (2010) Riboflavin induces resistance against Botrytis cinerea in bean, but not in tomato, by priming for a hydrogen peroxide-fueled resistance response. Physiol Mol Plant Pathol 75:22–29

    Article  Google Scholar 

  • Baier M, Dietz K (2005) Chloroplasts as source and target of cellular redox regulation: a discussion on chloroplast redox signals in the context of plant physiology. J Exp Bot 56:1449–1462

    Article  PubMed  CAS  Google Scholar 

  • Bartosík M, Ostatná V, Palecek E (2009) Electrochemistry of riboflavin-binding protein and its interaction with riboflavin. Bioelectrochemistry 76:70–75

    Article  PubMed  Google Scholar 

  • Bates LS, Waldren SP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Baxter CJ, Redestig H, Schauer N, Repsilber D, Patil KR, Nielsen J, Selbig J, Liu J, Fernie AR, Sweetlove LJ (2007) The metabolic response of heterotrophic Arabidopsis cells to oxidative stress. Plant Physiol 143:312–325

    Article  PubMed  CAS  Google Scholar 

  • Beligni MV, Fath A, Bethke PC, Lamattina L, Jones RL (2002) Nitric oxide acts as an antioxidant and delays programmed cell death in barley aleurone layers. Plant Physiol 129:1642–1650

    Article  PubMed  CAS  Google Scholar 

  • Beutler E (1969) Effect of flavin compounds on glutathione reductase activity: in vitro and in vivo studies. J Clin Invest 48:1957–1966

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Briggs WR, Huala E (1999) Blue-light photoreceptors in higher plants. Ann Rev Cell Dev Biol 15:33–62

    Article  CAS  Google Scholar 

  • Coley PD, Bryant JP, Chapin FS III (1985) Resource availability and plant antiherbivore defense. Science 230:895–899

    Article  PubMed  CAS  Google Scholar 

  • Couée I, Sulmon C, Gouesbet G, EI Amrani A (2006) Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J Exp Bot 57:449–459

    Article  PubMed  Google Scholar 

  • Deng B, Deng S, Sun F, Zhang S, Dong H (2011) Down-regulation of free riboflavin content induces hydrogen peroxide and a pathogen defense in Arabidopsis. Plant Mol Biol 77:185–201

    Article  PubMed  CAS  Google Scholar 

  • Dhindsa RS, Dhindsa PP, Thorpe TA (1980) Leaf senescence correlated with increased levels of membrane permeability and lipid-peroxidation and decreased levels of superoxide dismutase and catalase. J Exp Bot 32:93–101

    Article  Google Scholar 

  • Ding S, Lu Q, Zhang Y, Yang Z, Wen X, Zhang L, Lu C (2009) Enhanced sensitivity to oxidative stress in transgenic tobacco plants with decreased glutathione reductase activity leads to a decrease in ascorbate pool and ascorbate redox state. Plant Mol Biol 69:577–592

    Article  PubMed  CAS  Google Scholar 

  • Dong H, Beer SV (2000) Riboflavin induces disease resistance in plants by activating a novel signal transduction pathway. Phytopathology 90:801–811

    Article  PubMed  CAS  Google Scholar 

  • Eichler M, Lavi R, Shainberg A, Lubart R (2005) Flavins are source of visible-light-induced free radical formation in cells. Lasers Surg Med 37:314–319

    Article  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2003) Redox sensing and signaling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119:355–364

    Article  CAS  Google Scholar 

  • Foyer CH, Souriau N, Perret S, Lelandais M, Kunert KJ, Pruvost C, Jouanin L (1995) Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in Poplar trees. Plant Physiol 109:1047–1057

    Article  PubMed  CAS  Google Scholar 

  • Franks SJ (2011) Plasticity and evolution in drought avoidance and escape in the annual plant Brassica rapa. New Phytol 190:249–257

    Article  Google Scholar 

  • Fryer MJ, Andrews JR, Oxborough K, Blowers DA, Baker NR (1998) Relationship between CO2 assimilation, photosynthetic electron transport, and active O2 metabolism in leaves of maize in the field during periods of low temperature. Plant Physiol 116:571–580

    Article  PubMed  CAS  Google Scholar 

  • Gay C, Collins J, Gebicki J (1999) Hydroperoxide assay with the ferric-xylenol orange complex. Anal Biochem 273:149–155

    Article  PubMed  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  PubMed  CAS  Google Scholar 

  • Hamajima S, Ono S (1995) Sequence of a cDNA encoding turtle riboflavin-binding protein: a comparison with avian riboflavin-binding protein. Gene 164:279–282

    Article  PubMed  CAS  Google Scholar 

  • Hamilton JG, Zangerl AR, Delucia EH, Berenbaum MR (2001) The carbon-nutrient balance hypothesis: its rise and fall. Ecol Lett 4:86–95

    Article  Google Scholar 

  • He Y, Tang R, Hao Y, Stevens RD, Cook CW, Ahn SM, Jiang L, Yang Z, Chen L, Guo F, Fiorani F, Jackson RB, Crawford NM, Pei Z (2004) Nitric oxide represses the Arabidopsis floral transition. Science 305:1968–1971

    Article  PubMed  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplast. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:180–198

    Google Scholar 

  • Helgebostad A (1980) Embryonic death in mink due to riboflavin deficiency. Nord Vet Med 32:313–317

    PubMed  CAS  Google Scholar 

  • Horibata S, Hasegawa S, Kudo G (2007) Cost of reproduction in a spring ephemeral species, Adonis ramose (Ranunculaceae): carbon budget for seed production. Ann Bot 100:565–571

    Article  PubMed  Google Scholar 

  • Ivey CT, Carr DE (2011) Tests for the joint evolution of mating system and drought escape in Mimulus. Ann Bot 109:583–598

    Article  PubMed  Google Scholar 

  • Kolář J, Seňková J (2008) Reduction of mineral nutrient availability accelerates flowering of Arabidopsis thaliana. J Plant Physiol 165:1601–1609

    Article  PubMed  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophyll and carotenoids:pigments of photosynthetic biomembranes. Meth Enzymol 148:349–382

    Google Scholar 

  • Lu J, Tan D, Baskin M, Baskin CC (2010) Fruit and seed heteromorphism in the cold desert annual ephemeral Diptychocarpus strictus (Brassicaceae) and possible adaptive significance. Ann Bot 105:999–1014

    Article  PubMed  Google Scholar 

  • Meyre D, Leonardi A, Brisson G, Vartanian N (2001) Drought-adaptive mechanisms involved in the escape/tolerance strategies of Arabidopsis Landsberg erecta and Columbia ecotypes and their F1 reciprocal progeny. J Plant Physiol 158:1145–1152

    Article  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  PubMed  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network in plants. Trends Plant Sci 9:490–498

    Article  PubMed  CAS  Google Scholar 

  • Nagalakshmi N, Prasad MNV (2001) Responses of glutathione cycle enzymes and glutathione metabolism to copper stress in Scenedesmus bijugatus. Plant Sci 160:291–299

    Article  PubMed  CAS  Google Scholar 

  • Niinemets Ü (2010) Responses of forest trees to single and multiple environmental stresses from seedlings to mature plants: past stress history, stress interactions, tolerance and acclimation. For Ecol Manage 260:1623–1639

    Article  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Ann Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  Google Scholar 

  • Ogawa K, Tasaka Y, Mino M, Tanaka Y, Iwabuchi M (2001) Association of glutathione with flowering in Arabidopsis thaliana. Plant Cell Physiol 42:524–530

    Article  PubMed  CAS  Google Scholar 

  • Pierik R, de Wit M, Voesenek LACJ (2011) Growth-mediated stress escape: convergence of signal transduction pathways activated upon exposure to two different environmental stresses. New Phytol 189:122–134

    Article  PubMed  CAS  Google Scholar 

  • Pouteau S, Albertini C (2009) The significance of bolting and floral transitions as indicators of reproductive phase change in Arabidopsis. J Exp Bot 60:3367–3377

    Article  PubMed  CAS  Google Scholar 

  • Prochazkova D, Sairam RK, Srivastava GC, Singh DV (2001) Oxidative stress and antioxidant activity as the basis of senescence in maize leaves. Plant Sci 161:765–771

    Article  CAS  Google Scholar 

  • Ramanoff AL, Bauernfeind JC (1942) Influence of riboflavin-deficiency in eggs on embryonic development (Gallus domesticus). Anat Rec 82:11–23

    Article  Google Scholar 

  • Rivero RM, Kojima M, Gepstein A, Sakakibara H, Mittler R, Gepstein S, Blumwald E (2007) Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc Natl Acad Sci USA 104:19631–19636

    Article  PubMed  CAS  Google Scholar 

  • Roje S (2007) Vitamin B biosynthesis in plants. Phytochemistry 68:1904–1921

    Article  PubMed  CAS  Google Scholar 

  • Sagi M, Fluhr R (2006) Production of reactive oxygen species by plant NADPH oxidase. Plant Physiol 141:336–340

    Article  PubMed  CAS  Google Scholar 

  • Saikia R, Yadav M, Varghese S, Singh BP, Gogoi DK, Kumar R, Arora DK (2006) Role of riboflavin in induced resistance against Fusarium wilt and charcoal rot disease of chickpea. Plant Pathol J 22:339–347

    Article  Google Scholar 

  • Sairam RK, Srivastava GC (2002) Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Sci 162:897–904

    Article  CAS  Google Scholar 

  • Sandoval FJ, Zhang Y, Roje S (2008) Flavin nucleotide metabolism in plants: monofunctional enzymes synthesize FAD in plastids. J Biol Chem 283:30890–30900

    Article  PubMed  CAS  Google Scholar 

  • Scheibe R, Backhausen JE, Emmerlich V, Holtgrefe S (2005) Strategies to maintain redox homeostasis during photosynthesis under changing conditions. J Exp Bot 56:1481–1489

    Article  PubMed  CAS  Google Scholar 

  • Sedlak J, Lindsay RH (1968) Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem 25:192–205

    Article  PubMed  CAS  Google Scholar 

  • Serrato AJ, Pérez-Ruiz JM, Spínola MC, Cejudo FJ (2004) A noval NADPH thioredoxin reductase, localized in the chloroplast, which deficiency causes hypersensitivity to abiotic stress in Arabidopsis thaliana. J Biol Chem 279:43821–43827

    Article  PubMed  CAS  Google Scholar 

  • Smart RE, Bingham GE (1974) Rapid estimates of relative water content. Plant Physiol 53:258–260

    Article  PubMed  CAS  Google Scholar 

  • Taheri P, Tarighi S (2010) Riboflavin induces resistance in rice against Rhizoctonia solani via jasmonate-mediated priming of phenylpropanoid pathway. J Plant Physiol 167:201–208

    Article  PubMed  CAS  Google Scholar 

  • Tausz M, Šircelj H, Grill D (2004) The glutathione system as a stress marker in plant ecophysiology: is a stress-response concept valid? J Exp Bot 55:1955–1962

    Article  PubMed  CAS  Google Scholar 

  • Vincent G (2006) Leaf life span plasticity in tropical seedlings grown under contrasting light regimes. Ann Bot 97:245–255

    Article  PubMed  Google Scholar 

  • Wada KC, Takeno K (2010) Stress-induced flowering. Plant Signal Behav 5:944–947

    Article  PubMed  Google Scholar 

  • Wasylewski M (2000) Binding study of riboflavin-binding protein with riboflavin and its analogues by differential scanning calorimetry. J Protein Chem 19:523–528

    Article  PubMed  CAS  Google Scholar 

  • White HB III, Merrill AH (1988) Riboflavin-binding proteins. Ann Rev Nutr 8:279–299

    Article  CAS  Google Scholar 

  • Woo HR, Goh C, Park J, de la Serve BT, Kim J, Park Y, Nam HG (2002) Extended leaf longevity in the ore4-1 mutant of Arabidopsis with a reduced expression of a plastid ribosomal protein gene. Plant J 31:331–340

    Article  PubMed  CAS  Google Scholar 

  • Woo HR, Kim JH, Nam HG, Lim PO (2004) The delayed leaf senescence mutants of Arabidopsis, ore1, ore3, and ore9 are tolerant to oxidative stress. Plant Cell Physiol 45:923–932

    Article  PubMed  CAS  Google Scholar 

  • Wu T, Guo A, Zhao Y, Wang X, Wang Y, Zhao D, Li X, Ren H, Dong H (2010) Ectopic expression of the rice lumazine synthase gene contributes to defense responses in transgenic tobacco. Phytopathology 100:573–581

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Kirkham MB (1996) Antioxidant responses to drought in sunflower and sorghum seedling. New Phytol 132:361–373

    Article  CAS  Google Scholar 

  • Zhang S, Yang X, Sun M, Sun F, Deng S, Dong H (2009) Riboflavin-induced priming for pathogen defense in Arabidopsis thaliana. J Integr Plant Biol 51:167–174

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Natural Science Foundation of China (31171830) and Jiangsu Provincial Priority Academic Program Development of Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hansong Dong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, B., Dong, H. Ectopic Expression of Riboflavin-binding Protein Gene TsRfBP Paradoxically Enhances Both Plant Growth and Drought Tolerance in Transgenic Arabidopsis thaliana . J Plant Growth Regul 32, 170–181 (2013). https://doi.org/10.1007/s00344-012-9285-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-012-9285-5

Keywords

Navigation