Skip to main content
Log in

Enhanced sensitivity to oxidative stress in transgenic tobacco plants with decreased glutathione reductase activity leads to a decrease in ascorbate pool and ascorbate redox state

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

To investigate the possible mechanisms of glutathione reductase (GR) in protecting against oxidative stress, we obtained transgenic tobacco (Nicotiana tabacum) plants with 30–70% decreased GR activity by using a gene encoding tobacco chloroplastic GR for the RNAi construct. We investigated the responses of wild type and transgenic plants to oxidative stress induced by application of methyl viologen in vivo. Analyses of CO2 assimilation, maximal efficiency of photosystem II photochemistry, leaf bleaching, and oxidative damage to lipids demonstrated that transgenic plants exhibited enhanced sensitivity to oxidative stress. Under oxidative stress, there was a greater decrease in reduced to oxidized glutathione ratio but a greater increase in reduced glutathione in transgenic plants than in wild type plants. In addition, transgenic plants showed a greater decrease in reduced ascorbate and reduced to oxidized ascorbate ratio than wild type plants. However, there were neither differences in the levels of NADP and NADPH and in the total foliar activities of monodehydroascorbate reductase and dehydroascorbate reductase between wild type and transgenic plant. MV treatment induced an increase in the activities of GR, ascorbate peroxidase, superoxide dismutase, and catalase. Furthermore, accumulation of H2O2 in chloroplasts was observed in transgenic plants but not in wild type plants. Our results suggest that capacity for regeneration of glutathione by GR plays an important role in protecting against oxidative stress by maintaining ascorbate pool and ascorbate redox state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126. doi:10.1016/S0076-6879(84)05016-3

    Article  PubMed  CAS  Google Scholar 

  • Alscher RG (1989) Biosynthesis and antioxidant function of glutathione in plants. Physiol Plant 77:457–464. doi:10.1111/j.1399-3054.1989.tb05667.x

    Article  CAS  Google Scholar 

  • Amsellem Z, Jansen MAK, Driesenaar ARJ, Gressel J (1993) Developmental variability of photooxidative stress tolerance in paraquat-resistant Conyza. Plant Physiol 103:1097–1106

    PubMed  CAS  Google Scholar 

  • An G (1987) Binary Ti vectors for plant transformation and promoter analysis. Methods Enzymol 153:292–305. doi:10.1016/0076-6879(87)53060-9

    Article  CAS  Google Scholar 

  • Anderson JV, Chevone B, Hess JL (1992) Seasonal variation in the antioxidant system of eastern white pine needles. Plant Physiol 98:501–508

    Article  PubMed  CAS  Google Scholar 

  • Aono M, Kubo A, Saji H, Tanaka KK, Kondo N (1993) Enhanced tolerance to photooxidative stress of transgenic Nicotiana tabacum with chloroplastic glutathione reductase activity. Plant Cell Physiol 34:129–135

    CAS  Google Scholar 

  • Aono M, Saji H, Fujiyama K, Sugita M, Kondo N, Tanaka K (1995) Decrease in activity of glutathione reductase enhanced paraquat sensitivity in transgenic Nicotiana tabacum. Plant Physiol 107:645–648

    PubMed  CAS  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  PubMed  CAS  Google Scholar 

  • Arrigoni O, Dipierro S, Borraccino G (1981) Ascorbate free radical reductase: a key enzyme of the ascorbic acid system. FEBS Lett 125:242–244. doi:10.1016/0014-5793(81)80729-6

    Article  CAS  Google Scholar 

  • Asada K (1999) The water–water cycle in chloroplasts: scavenging active oxygen species and dissipation of excess photons. Annu Rev Plant Physiol Mol Biol 50:601–639. doi:10.1146/annurev.arplant.50.1.601

    Article  CAS  Google Scholar 

  • Bestwick CS, Brown IR, Bennett MH, Mansfield JW (1997) Localization of hydrogen peroxide accumulation during the hypersensitive reaction of lettuce cells to Pseudomonas syringae pv phaseolicola. Plant Cell 9:209–221

    Article  PubMed  CAS  Google Scholar 

  • Beyer WF, Fridovich I (1987) Assaying for superoxide dismutase activity: some large consequences of minor changes in condition. Anal Biochem 72:248–254

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein using the principal of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  PubMed  CAS  Google Scholar 

  • Broadbent P, Creissen GP, Kular B, Wellburn AR, Mullineaux PM (1995) Oxidative stress responses in transgenic tobacco containing altered levels of glutathione reductase activity. Plant J 8:247–255. doi:10.1046/j.1365-313X.1995.08020247.x

    Article  CAS  Google Scholar 

  • Chang CC, Ball L, Fryer MJ, Baker NR, Karpinski S, Mullineaux PM (2004) Induction of ASCORBATE PEROXIDASE 2 expression in wounded Arabidopsis leaves does not involve known wound-signalling pathways but is associated with changes in photosynthesis. Plant J 38:499–511. doi:10.1111/j.1365-313X.2004.02066.x

    Article  PubMed  CAS  Google Scholar 

  • Creissen GP, Mullineaux PM (1995) Cloning and characterization of glutathione reductase cDNAs and identification of two genes encoding the tobacco enzyme. Planta 197:422–425. doi:10.1007/BF00202667

    Article  PubMed  CAS  Google Scholar 

  • Creissen GP, Edwards EA, Enard C, Wellburn A, Mullineaux PM (1992) Molecular characterization of glutathione reductase cDNAs from pea (Pisum sativum L.). Plant J 2:129–131

    PubMed  CAS  Google Scholar 

  • Creissen GP, Reynolds H, Xue Y, Mullineaux PM (1995) Simultaneous targeting of pea glutathione reductase and of a bacterial fusion protein to chloroplasts and mitochondria in transgenic tobacco. Plant J 8:167–175. doi:10.1046/j.1365-313X.1995.08020167.x

    Article  PubMed  CAS  Google Scholar 

  • Dodge AD (1994) Herbicide action and effects on detoxification processes. In: Foyer CH, Mullineaux PM (eds) Causes of photooxidative stress and amelioration of defense systems in plants. CRC Press, Boca Raton, pp 219–236

    Google Scholar 

  • Edwards EA, Rawsthorne S, Mullineaux PM (1990) Subcellular distribution of multiple forms of glutathione reductase in leaves of pea (Pisum sativum L.). Planta 180:278–284. doi:10.1007/BF00194008

    Article  CAS  Google Scholar 

  • Edwards EA, Enard C, Creissen GP, Mullineaux PM (1994) Synthesis and properties of glutathione reductase in stressed peas. Planta 192:137–143

    CAS  Google Scholar 

  • Foyer CH (1997) Oxygen metabolism and electron transport in photosynthesis. In: Scandalios J (ed) Oxidative stress and the molecular biology of antioxidant defenses. Cold Spring Harbor Laboratory Press, New York, pp 587–621

    Google Scholar 

  • Foyer CH, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplast: a proposed role in ascorbic acid metabolism. Planta 133:21–25. doi:10.1007/BF00386001

    Article  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signalling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875. doi:10.1105/tpc.105.033589

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH, Lelandais M, Galap C, Kunert KJ (1991) Effects of elevated cytosolic glutathione reductase activity on the cellular glutathione pool and photosynthesis in leaves under normal and stress conditions. Plant Physiol 97:863–872

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH, Souriau N, Perret S, Lelandais M, Kunert KJ, Pruvost C, Jouanin L (1995) Overexpression of the glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees. Plant Physiol 109:1047–1057. doi:10.1104/pp.109.3.1047

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH, Lopez-Delgado H, Dat JF, Scott IM (1997) Hydrogen peroxide- and glutathione-associated mechanisms of acclamatory stress tolerance and signalling. Physiol Plant 100:241–254. doi:10.1111/j.1399-3054.1997.tb04780.x

    Article  CAS  Google Scholar 

  • Fryer MJ, Ball L, Oxborough K, Karpinski S, Mullineaux PM, Baker NR (2003) Control of ascorbate peroxidase 2 expression by hydrogen peroxide and leaf water status during excess light stress reveals a functional organisation of Arabidopsis leaves. Plant J 33:691–705. doi:10.1046/j.1365-313X.2003.01656.x

    Article  PubMed  CAS  Google Scholar 

  • Gallogly MM, Mieyal JJ (2007) Mechanisms of reversible protein glutathionylation in redox signalling and oxidative stress. Curr Opin Pharmacol 7:381–391. doi:10.1016/j.coph.2007.06.003

    Article  PubMed  CAS  Google Scholar 

  • Gomez LD, Noctor G, Knight MR, Foyer CH (2004) Regulation of calcium signalling and gene expression by glutathione. J Exp Bot 55:1851–1859. doi:10.1093/jxb/erh202

    Article  PubMed  CAS  Google Scholar 

  • González A, Steffen KL, Lynch JP (1998) Light and excess manganese. Plant Physiol 118:493–504. doi:10.1104/pp.118.2.493

    Article  PubMed  Google Scholar 

  • Hausladen A, Alscher RG (1994) Cold-hardness-specific glutathione reductase isoforms in red spruce. Plant Physiol 105:215–223. doi:10.1104/pp.105.1.215

    Article  PubMed  CAS  Google Scholar 

  • Hell R (1997) Molecular physiology of plant sulfur metabolism. Planta 202:138–148. doi:10.1007/s004250050112

    Article  PubMed  CAS  Google Scholar 

  • Hodges DM, De Long JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 270:604–611. doi:10.1007/s004250050524

    Article  Google Scholar 

  • Horsh RB, Fry JE, Hoffman HL, Eicholts D, Rogers SG, Fraley RT (1985) Simple and general method for transferring genes into plants. Science 277:1229–1231

    Google Scholar 

  • Huang Z, Pinto JT, Deng H, Richie JP Jr (2008) Inhibition of caspase-3 activity and activation by protein glutathionylation. Biochem Pharmacol 75:2234–2244. doi:10.1016/j.bcp.2008.02.026

    Article  PubMed  CAS  Google Scholar 

  • Jiménez A, Hernandez JA, del Rio LA, Sevilla F (1997) Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol 114:275–284

    PubMed  Google Scholar 

  • Karpinski S, Escobar C, Karpinska B, Creissen G, Mullineaux PM (1997) Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in excess light stress. Plant Cell 9:627–640

    Article  PubMed  CAS  Google Scholar 

  • Karpinski S, Reynolds H, Karpinska B, Wingsle G, Creissen G, Mullineaux P (1999) Systemic signalling and acclimation in response to excess excitation energy in Arabidopsis. Science 23:654–657. doi:10.1126/science.284.5414.654

    Article  Google Scholar 

  • Karpinski S, Gabrys H, Mateo A, Karpinska B, Mullineaux PM (2003) Light perception in plant disease defence signalling. Curr Opin Plant Biol 6:390–396. doi:10.1016/S1369-5266(03)00061-X

    Article  PubMed  CAS  Google Scholar 

  • Knörzer OC, Durner J, Böger P (1996) Alterations in the antioxidative system of suspension-cultured soybean cells (Glycine max) induced by oxidative stress. Physiol Plant 97:388–396. doi:10.1034/j.1399-3054.1996.970225.x

    Article  Google Scholar 

  • Kocsy G, Brunner M, Rüegsegger A, Stamp P, Brunold C (1996) Glutathione synthesis in maize genotypes with different sensitivities to chilling. Planta 198:365–370. doi:10.1007/BF00620052

    Article  CAS  Google Scholar 

  • Kocsy G, Szalai G, Vágújfalvi A, Stéhli L, Orosz G, Galiba G (2000) Genetic study of glutathione accumulation during cold hardening in wheat. Planta 210:295–301. doi:10.1007/PL00008137

    Article  PubMed  CAS  Google Scholar 

  • Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol 42:313–349. doi:10.1146/annurev.pp.42.060191.001525

    Article  CAS  Google Scholar 

  • Kunert KJ, Foyer CH (1993) Thiol/disulphide exchange in plants. In: De Kok LJ (ed) Sulfur nutrition and assimilation in higher plants. SPB Academic Publishing, The Hague, The Netherlands, pp 139–151

    Google Scholar 

  • Laemmli HK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. doi:10.1038/227680a0

    Article  PubMed  CAS  Google Scholar 

  • Lim CE, Choil JN, Kim IA, Lee SA, Hwang YS, Lee CH, Lim J (2008) Improved resistance to oxidative stress by a loss-of-function mutation in the Arabidopsis UGT71C1 Gene. Mol Cells 25:368–375

    PubMed  CAS  Google Scholar 

  • Maciejewska U, Kacperska A (1987) Changes in the levels of oxidized and reduced pyridine nucleotides during cold acclimation of winter grape plants. Physiol Plant 69:687–691. doi:10.1111/j.1399-3054.1987.tb01985.x

    Article  CAS  Google Scholar 

  • Marrs K (1996) The functions and regulation of gluthathione S-transferases in plants. Annu Rev Plant Physiol Plant Mol Biol 48:127–158. doi:10.1146/annurev.arplant.47.1.127

    Article  Google Scholar 

  • Maughan S, Foyer CH (2006) Engineering and genetic approaches to modulating the glutathione network in plants. Physiol Plant 126:382–397. doi:10.1111/j.1399-3054.2006.00684.x

    Article  CAS  Google Scholar 

  • May MJ, Vernoux T, Leaver C, Montagu MV, Inzé D (1998) Glutathione homeostasis in plants: implications for environmental sensing and plant development. J Exp Bot 49:649–667. doi:10.1093/jexbot/49.321.649

    Article  CAS  Google Scholar 

  • Mittova V, Theodoulou FL, Kiddle G, Gómez L, Volokita M, Tal M, Foyer CH, Guy M (2003) Coordinate induction of glutathione biosynthesis and glutathione metabolizing enzymes is correlated with salt tolerance in tomato. FEBS Lett 554:417–421. doi:10.1016/S0014-5793(03)01214-6

    Article  PubMed  CAS  Google Scholar 

  • Mullineaux P, Karpinski S (2002) Signal transduction in response to excess light: getting out of the chloroplast. Curr Opin Plant Biol 5:43–48. doi:10.1016/S1369-5266(01)00226-6

    Article  PubMed  CAS  Google Scholar 

  • Mullineaux PM, Karpinski S, Baker NR (2006) Spatial dependence for hydrogen peroxide-directed signalling in light stressed plants. Plant Physiol 141:346–350. doi:10.1104/pp.106.078162

    Article  PubMed  CAS  Google Scholar 

  • Nakano Y, Asada K (1980) Spinach chloroplasts scavenge hydron perodide on illumination. Plant Cell Physiol 21:1295–1307

    CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279. doi:10.1146/annurev.arplant.49.1.249

    Article  PubMed  CAS  Google Scholar 

  • Noctor G, Arisi AM, Jouanin L, Kunert KJ, Rennenberg H, Foyer CH (1998) Glutathione: biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants. J Exp Bot 49:623–647. doi:10.1093/jexbot/49.321.623

    Article  CAS  Google Scholar 

  • Noctor G, Gomez L, Vanacker H, Foyer CH (2002) Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling. J Exp Bot 53:1283–1304. doi:10.1093/jexbot/53.372.1283

    Article  PubMed  CAS  Google Scholar 

  • Pilon-Smit EAH, Zhu YL, Sears T, Terry N (2000) Overexpression of glutathione reductase in Brassica juncea: effects on cadmium accumulation and tolerance. Physiol Plant 110:455–460. doi:10.1111/j.1399-3054.2000.1100405.x

    Article  Google Scholar 

  • Queval G, Hager J, Gakière B, Noctor G (2008) Why are literature data for H2O2 contents so variable? A discussion of potential difficulties in the quantitative assay of leaf extracts. J Exp Bot 59:135–146. doi:10.1093/jxb/erm193

    Article  PubMed  CAS  Google Scholar 

  • Robinson GP, Walker DA (1979) Rapid separation of the chloroplast and cytoplasmic fractions from intact leaf protoplasts. Arch Biochem Biophys 196:319–323. doi:10.1016/0003-9861(79)90584-8

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Fernández R, Fricker M, Corben LB, White NS, Sheard N, Leaver CJ, Van Montagu M, Inzé D, Nay NJ (1997) Cell proliferation and hair tip growth in the Arabidopsis root are under mechanistically different forms of redox control. Proc Natl Acad Sci USA 94:2745–2750. doi:10.1073/pnas.94.6.2745

    Article  PubMed  Google Scholar 

  • Stevens RG, Creissen GP, Mullineaux PM (1997) Cloning and characterisation of a cytosolic glutathione reductase cDNA from pea (Pisum sativum L.) and its expression in response to stress. Plant Mol Biol 35:641–654. doi:10.1023/A:1005858120232

    Article  PubMed  CAS  Google Scholar 

  • Stevens RG, Creissen GP, Mullineaux PM (2000) Characterization of pea cytosolic glutathione reductase expressed in transgenic tobacco. Planta 211:537–545. doi:10.1007/s004250000304

    Article  PubMed  CAS  Google Scholar 

  • Veljovic-Jovanovic S, Noctor G, Foyer CH (2002) Are leaf hydrogen peroxide concentrations commonly overestimated? The potential influence of artefactual interference by tissue phenolics and ascorbate. Plant Physiol Biochem 40:501–507. doi:10.1016/S0981-9428(02)01417-1

    Article  CAS  Google Scholar 

  • Wesley SV, Helliwell CA, Smith NA, Wang MB, Rouse DT, Liu Q, Gooding PS, Singh SP, Abbott D, Stoutjesdijk PA, Robinson SP, Gleave AP, Green AG, Waterhouse PM (2001) Construct design for efficient, effective and high throughput gene silencing in plants. Plant J 27:581–590. doi:10.1046/j.1365-313X.2001.01105.x

    Article  PubMed  CAS  Google Scholar 

  • Wingate VPM, Lawton MA, Lamb CJ (1988) Glutathione causes a massive and selective induction of plant defense genes. Plant Physiol 31:205–211

    Google Scholar 

  • Xiong Y, Contento AL, Nguyen PQ, Bassham DC (2007) Degradation of oxidized proteins by autophagy during oxidative stress in Arabidopsis. Plant Physiol 143:291–299. doi:10.1104/pp.106.092106

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Liang Z, Lu C (2005) Genetic engineering of the biosynthesis of glycinebetaine enhances photosynthesis against high temperature stress in transgenic tobacco plants. Plant Physiol 138:2299–2309. doi:10.1104/pp.105.063164

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura K, Miyao K, Gaber A, Takeda T, Kanaboshi H, Miyasaka H, Shigeoka S (2004) Enhancement of stress tolerance in transgenic tobacco plants overexpressing Chlamydomonas glutathione peroxidase in chloroplasts or cytosol. Plant J 37:21–33. doi:10.1046/j.1365-313X.2003.01930.x

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank CSIRO Plant Industry for providing the RNAi vectors and Prof. Jinxin Lin for help with cytochemical analysis. This work was supported by the Frontier Project of the Knowledge Innovation Engineering of Chinese Academy of Sciences (KSCX2-YW-N-042), the National Natural Science Foundation of China (30725024), and the Major Key Basic Research and Development Plan of China (2009CB118500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Congming Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, S., Lu, Q., Zhang, Y. et al. Enhanced sensitivity to oxidative stress in transgenic tobacco plants with decreased glutathione reductase activity leads to a decrease in ascorbate pool and ascorbate redox state. Plant Mol Biol 69, 577–592 (2009). https://doi.org/10.1007/s11103-008-9440-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-008-9440-3

Keywords

Navigation