Skip to main content
Log in

Effect of Selenium on Ascorbate–Glutathione Metabolism During PEG-induced Water Deficit in Trifolium repens L.

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

To elucidate the effect of selenium (Se) on the ascorbate–glutathione (ASC–GSH) cycle under drought stress, the activities of antioxidant enzymes and the levels of molecules involved in ASC–GSH metabolism were studied in Trifolium repens seedlings subjected to polyethylene glycol (PEG)-induced water deficit alone or combined with 5 μM Na2SeO4. Compared to the control, H2O2, thiobarbituric acid reactive substances (TBARS), ascorbate (ASC), dehydroascorbate (DHA), and glutathione disulfide (GSSG) contents increased, whereas a constant content of glutathione (GSH) and decreases in ASC/DHA and GSH/GSSG ratios were observed in the presence of PEG. The activities of ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), and glutathione reductase (GR) were upregulated, except for monodehydroascorbate reductase (MDHAR) activity during PEG-induced water deficit. Se application decreased the contents of H2O2, TBARS, DHA, and GSSG, increased the levels of GSH and ASC, and inhibited the decreases of ASC/DHA and GSH/GSSG ratios. Although it did not affect APX activity significantly, Se addition improved the activities of MDHAR, DHAR, and GR. Furthermore, GR activity showed the highest increase followed by that of DHAR and MDHAR in decreasing order. These data indicated that fluctuations in ASC–GSH metabolism resulting from Se may have a positive effect on drought stress mitigation, and the regulation in the ASC–GSH cycle can be attributed mainly to GR and DHAR in PEG + Se-treated T. repens seedlings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arrigoni O (1994) Ascorbate system in plant development. J Bioenerg Biomembr 26:407–419

    Article  PubMed  CAS  Google Scholar 

  • Asada K (1994) Production and action of active oxygen in photosynthetic tissues. In: Foyer CH, Mullineaux PM (eds) Causes of photo-oxidative stress in plants and amelioration of defence system. CRC Press, Boca Raton, FL, pp 77–109

    Google Scholar 

  • Belmonte MF, Macey J, Yeung EC, Stasolla C (2005) The effect of osmoticum on ascorbate and glutathione metabolism during white spruce (Picea glauca) somatic embryo development. Plant Physiol Biochem 43:337–346

    Article  PubMed  CAS  Google Scholar 

  • Bermejo R, Irigoyen JJ, Santamaria JM (2006) Short-term drought response of two white clover clones, sensitive and tolerant to O3. Physiol Plant 127:658–669

    Article  CAS  Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt K (2003) Antioxidants, oxidative damages and oxygen deprivation stress: a review. Ann Bot 91:179–194

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Bray EA (2004) Genes commonly regulated by water-deficit stress in Arabidopsis thaliana. J Exp Bot 55:2331–2341

    Article  PubMed  CAS  Google Scholar 

  • Briviba K, Klotz LO, Sies H (1997) Toxic and signalling effects of photochemically or chemically generated singlet oxygen in biological systems. Biol Chem 378:1259–1265

    PubMed  CAS  Google Scholar 

  • Brown TA, Shrift A (1982) Selenium-toxicity and tolerance in higher plants. Biol Rev Camb Philos Soc 57:59–84

    Article  CAS  Google Scholar 

  • Carlberg I, Mannervik B (1985) Glutathione reductase. Methods Enzymol 113:484–490

    Article  PubMed  CAS  Google Scholar 

  • Cartes P, Gianfreda L, Mora ML (2005) Uptake of selenium and its antioxidant activity in ryegrass when applied as selenate and selenite forms. Plant Soil 276:359–367

    Article  CAS  Google Scholar 

  • Cartes P, Shene C, Mora ML (2006) Selenium distribution in ryegrass and its antioxidant role as affected by sulfur fertilization. Plant Soil 285:187–195

    Article  CAS  Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought—from genes to the whole plant. Funct Plant Biol 30:239–264

    Article  CAS  Google Scholar 

  • Davis CD, Utbus EO, Finley JW (2000) Dietary selenium and arsenic affects DNA methylation in vitro in caco-2 cells and in vitro in rat liver and colon. J Nutr 130:2903–2909

    PubMed  CAS  Google Scholar 

  • Djanaguiraman M, Devi DD, Shanker AK, Sheeba JA, Bangarusamy U (2005) Selenium—an antioxidative protectant in soybean during senescence. Plant Soil 272:77–86

    Article  CAS  Google Scholar 

  • Djanaguiraman M, Prasad PVV, Seppanen M (2010) Selenium protects sorghum leaves from oxidative damage under high temperature stress by enhancing antioxidant defense system. Plant Physiol Biochem 48:999–1007

    Article  PubMed  CAS  Google Scholar 

  • Filek M, Keskinen R, Hartikainen H, Szarejko I, Janiak A, Miszalski Z, Golda A (2008) The protective role of selenium in rape seedlings subjected to cadmium stress. J Plant Physiol 165:833–844

    Article  PubMed  CAS  Google Scholar 

  • Fu LH, Wang XF, Eyal Y, She YM, Donald LJ, Standing KG, Ben-Hayyim G (2002) A selenoprotein in the plant kingdom. Mass spectrometry confirms that an opal codon (UGA) encodes selenocysteine in Chlamydomonas reinhardtii glutathione peroxidase. J Biol Chem 277:25983–25991

    Article  PubMed  CAS  Google Scholar 

  • Gomes-Junior RA, Gratão PL, Gaziola SA, Mazzafera P, Lea PJ, Azevedo RA (2007) Selenium-induced oxidative stress in coffee cell suspension cultures. Funct Plant Biol 34:449–456

    Article  CAS  Google Scholar 

  • Grace SC, Logan BA (1996) Acclimation of foliar antioxidant systems to growth irradiance in three broad-leaved evergreen species. Plant Physiol 112:1631–1640

    PubMed  CAS  Google Scholar 

  • Griffith OW (1980) Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem 106:207–212

    Article  PubMed  CAS  Google Scholar 

  • Hanson B, Lindblom D, Loeffler ML, Pilon-Smits EAH (2004) Selenium protects plants from phloem-feeding aphids due to both deterrence and toxicity. New Phytol 162:655–662

    Article  CAS  Google Scholar 

  • Hartikainen H (2005) Biogeochemistry of selenium and its impact on food chain quality and human health. J Trace Elem Med Biol 18:309–318

    Article  PubMed  CAS  Google Scholar 

  • Hartikainen H, Xue T, Piironen V (2000) Selenium as an antioxidant and pro-oxidant in ryegrass. Plant Soil 225:193–200

    Article  CAS  Google Scholar 

  • Hodges DM, Andrews CJ, Johnson DA, Hamilton RI (1996) Antioxidant compound responses to chilling stress in differentially sensitive inbred maize lines. Physiol Plant 98:685–692

    Article  CAS  Google Scholar 

  • Horemans N, Foyer CH, Asard H (2000) Transport and action of ascorbate at the plant plasma membrane. Trends Plant Sci 5:263–267

    Article  PubMed  CAS  Google Scholar 

  • Hossain MA, Asada K (1984) Purification of dehydroascorbate reductase from spinach and its characterization as a thiol enzyme. Plant Cell Physiol 25:85–92

    CAS  Google Scholar 

  • Hossain MA, Nakano Y, Asada K (1984) Monodehydroascorbate reductase in spinach chloroplast and its participation in regeneration of ascorbate for scavenging hydrogen peroxide. Plant Cell Physiol 11:351–358

    Google Scholar 

  • Jiménez A, Hernández JA, Pastori G, del Río LA, Sevilla F (1998) Role of the ascorbate-glutathione cycle of mitochondria and peroxisomes in the senescence of Pea leaves. Plant Physiol 118:1327–1335

    Article  PubMed  Google Scholar 

  • Kuźniak E, Skłodowska M (1999) The effect of Botrytis cinerea infection on ascorbate-glutathione cycle in tomato leaves. Plant Sci 148:69–76

    Article  Google Scholar 

  • Lee BR, Kim KY, Jung WJ, Avice JC, Ourry A, Kim TH (2007) Peroxidases and lignification in relation to the intensity of water deficit stress in white clover (Trifolium repens L.). J Exp Bot 58:1271–1279

    Article  PubMed  CAS  Google Scholar 

  • Lee BR, Li LS, Jung WJ, Jin YL, Avice JC, Ourry A, Kim TH (2009) Water deficit-induced oxidative stress and the activation of antioxidant enzymes in white clover leaves. Biol Plant 53:505–510

    Article  Google Scholar 

  • Mehlhorn H, Lelandais M, Korth HG, Foyer CH (1996) Ascorbate is the natural substrate for plant peroxidases. FEBS Lett 378:203–206

    Article  PubMed  CAS  Google Scholar 

  • Mora ML, Pinilla L, Rosas A, Cartes P (2008) Selenium uptake and its influence on the antioxidative system of white clover as affected by lime and phosphorus fertilization. Plant Soil 303:139–149

    Article  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  PubMed  CAS  Google Scholar 

  • Nowak J, Kaklewski K, Ligocki M (2004) Influence of selenium on oxidoreductive enzymes activity in soil and in plants. Soil Biol Biochem 36:1553–1558

    Article  CAS  Google Scholar 

  • Seppänen M, Turakainen M, Hartikainen H (2003) Selenium effects on oxidative stress in potato. Plant Sci 165:311–319

    Article  Google Scholar 

  • Smirnoff N (1993) The role of active oxygen in the response to water deficit and desiccation. New Phytol 125:27–58

    Article  CAS  Google Scholar 

  • Smirnoff N (1996) The function and metabolism of ascorbic acid in plants. Ann Bot 78:661–669

    Article  CAS  Google Scholar 

  • Smirnoff N (2000) Ascorbic acid: metabolism and functions of a multifacetted molecule. Curr Opin Plant Biol 3:229–235

    PubMed  CAS  Google Scholar 

  • Smith GS, Watkinson JH (1984) Selenium toxicity in perennial ryegrass and white clover. New Phytol 97:557–564

    Article  CAS  Google Scholar 

  • Takeda T, Nakano Y, Shigeoka S (1993) Effects of selenite, CO2 and illumination on the induction of selenium-dependent glutathione peroxidase in Chlamydomonas reinhardtii. Plant Sci 94:81–88

    Article  CAS  Google Scholar 

  • Takiguchi M, Achanzar WE, Qu W, Li G, Waalkes MP (2003) Effects of cadmium on DNA-(cytosine-5) methyltransferase activity and DAN methylation status during cadmium-induced cellular transformation. Exp Cell Res 286:355–365

    Article  PubMed  CAS  Google Scholar 

  • Valkama E, Kivimäenpää M, Hartikainen H, Wulff A (2003) The combined effects of enhanced UV-B radiation and selenium on growth, chlorophyll fluorescence and ultrastructure in strawberry (Fragaria × ananassa) and barley (Hordeum vulgare) treated in the field. Agric For Meteorol 120:267–278

    Article  Google Scholar 

  • Wang CQ, Li RC (2008) Enhancement of superoxide dismutase activity in the leaves of white clover (Trifolium repens L.) in response to polyethylene glycol-induced water stress. Acta Physiol Plant 30:841–847

    Article  CAS  Google Scholar 

  • Wang CQ, Song H (2009) Calcium protects Trifolium repens L. seedlings against cadmium stress. Plant Cell Rep 28:1341–1349

    Article  PubMed  CAS  Google Scholar 

  • Wang CQ, Zhang YF, Zhang YB (2008) Scavenger enzyme activities in subcellular fractions of white Clover (Trifolium repens L.) under PEG-induced water stress. J Plant Growth Regul 27:387–393

    Article  CAS  Google Scholar 

  • Wu L, Huang ZZ (1992) Selenium assimilation and nutrient element uptake in white clover and tall fescue under the influence of sulphate concentration and selenium tolerance of the plants. J Exp Bot 43:549–555

    Article  CAS  Google Scholar 

  • Xu M, Li X, Korban S (2000) AFLP-based detection of DNA methylation. Plant Mol Biol Rep 18:361–368

    Article  CAS  Google Scholar 

  • Xue TL, Hartikainen H, Piironen V (2001) Antioxidative and growth-promoting effects of selenium on senescing lettuce. Plant Soil 237:55–61

    Article  CAS  Google Scholar 

  • Yokota A, Shigeoka S, Onishi T, Kitaoka S (1988) Selenium as inducer of glutathione peroxidase in low-CO2-grown Chlamydomonas reinhardtii. Plant Physiol 86:649–651

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Quan Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, CQ., Xu, HJ. & Liu, T. Effect of Selenium on Ascorbate–Glutathione Metabolism During PEG-induced Water Deficit in Trifolium repens L.. J Plant Growth Regul 30, 436–444 (2011). https://doi.org/10.1007/s00344-011-9206-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-011-9206-z

Keywords

Navigation