Skip to main content
Log in

The characteristic pattern of multiple colored layers in coastal stratified lakes in the process of separation from the White Sea

  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

An unusual feature of the saline stratified lakes that were formed due to ongoing postglacial uplift on the White Sea coast is the presence of several differently colored thin layers in the zone with sharp gradients. Colored layers in five lakes at various stages of separation from the sea were investigated using optical microscopy, spectrophotometry, spectrofluorimetry, and photobiology. The upper greenish colored layer located in the aerobic strata of all lakes near the compensation depth of 1% light penetration contains green algae. In the chemocline, another layer, brightly green, red or pink, is dominated by mixotrophic flagellates. Despite the very low light intensities and the presence of H2S, active photosynthesis by these algae appears to be occurring, as indicated by high values of the maximum quantum yield of primary photochemistry, electron transport activity, photosynthetic activity of photosystem II, the fraction of active centers, and low values of heat dissipation. In the reduced zone of the chemocline, a dense green or brown suspension of anoxygenic phototrophs (green sulfur bacteria) is located.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altenbach A V, Bernhard J M, Seckbach J. 2012. Anoxia: Evidence for Eukaryote Survival and Paleontological Strategies. Springer, Dordrecht. 648p.

    Google Scholar 

  • Anderson G C. 1969. Subsurface chlorophyll maximum in the northeast Pacific Ocean. Limnol. Oceanogr., 14 (3): 386–391.

    Article  Google Scholar 

  • Behnke A, Bunge J, Barger K, Breiner H W, Alla V, Stoeck T. 2006. Microeukaryote community patterns along an O 2 /H 2 S gradient in a supersulfidic anoxic fjord (Framvaren, Norway). Appl. Environ. Microbiol., 72 (5): 3 626–3 636.

    Article  Google Scholar 

  • Buvalyy S, Garmaeva S, Mardashova M, Krasnova E, Menshenina L. 2015. Macrobenthos composition at the shoreline of Kislo–Sladkoye Lake, separating from the White Sea. EARSeL eProceedings, 14 (S1): 63–70.

    Google Scholar 

  • Camacho A. 2006. On the occurrence and ecological features of deep chlorophyll maxima (DCM) in Spanish stratified lakes. Limnetica, 25 (1–2): 453–478.

    Google Scholar 

  • Castenholz R W, Utkilen H C. 1984. Loss of sulfide adaptation ability in a thermophilic Oscillatoria. Arch. Microbiol., 138 (4): 306–309.

    Article  Google Scholar 

  • Clegg M R, Gaedke U, Boehrer B, Spijkerman E. 2012. Complementary ecophysiological strategies combine to facilitate survival in the hostile conditions of a deep chlorophyll maximum. Oecologia, 169 (3): 609–622.

    Article  Google Scholar 

  • Cullen J J. 2015. Subsurface chlorophyll maximum layers: enduring enigma or mystery solved? Annu. Rev. Mar. Sci., 7: 207–239.

    Article  Google Scholar 

  • Dubinin A V, Demidova T P, Kremenetskii V V, Kokryatskaya N M, Rimskaya–Korsakova M N, Yakushev E V. 2012. Determination of the reduced sulfur species in the anoxic zone of the Black Sea: a comparison of the spectrophotometry and iodometry techniques. Oceanology, 52 (2): 181–190.

    Article  Google Scholar 

  • Falkowski P G, Raven J A. 2007. Aquatic Photosynthesis. Princeton University Press, Princeton. 488p.

    Google Scholar 

  • Flynn K J, Davidson K, Cunningham A. 1996. Prey selection and rejection by a microflagellate: implications for the study and operation of microbial food webs. J. Exp. Mar. Biol. Ecol., 196 (1–2): 357–372.

    Article  Google Scholar 

  • Gentien P, Reguera B, Yamazaki H, Fernand L, Berdalet E, Raine R. 2008. Global ecology and oceanography of harmful algal blooms. GEOHAB Core Research Project: HABs in Stratified Systems. SCOR and IOC, Baltimore and Paris.

    Google Scholar 

  • Gervais F. 1998. Ecology of cryptophytes coexisting near a freshwater chemocline. Freshw. Biol., 39 (1): 61–78.

    Article  Google Scholar 

  • Gies E A, Konwar K M, Beatty J T, Hallam S J, Löffler F E. 2014. Illuminating microbial dark matter in meromictic Sakinaw Lake. Appl. Environ. Microbiol., 80 (21): 6 807–6 818.

    Article  Google Scholar 

  • Gorlenko V M, Vainshtein M B, Kachalkin V I. 1978. Microbiological characteristic of lake Mogilnoye. Arch. Hydrobiol., 81 (4): 475–492.

    Google Scholar 

  • Hakala A. 2004. Meromixis as a part of lake evolution—observations and a revised classification of true meromictic lakes in Finland. Boreal Environ. Res, 9: 37–53.

    Google Scholar 

  • Hamilton D P, O’Brien K R, Burford M A, Brookes J D, McBride C G. 2010. Vertical distributions of chlorophyll in deep, warm monomictic lakes. Aquat. Sci., 72 (3): 295–307.

    Article  Google Scholar 

  • Hansen F C, Witte H J, Passarge J. 1996. Grazing in the heterotrophic dinoflagellate Oxyrrhis marina: size selectivity and preference for calcified Emiliania huxleyi cells. Aquat. Microb. Ecol., 10 (3): 307–313.

    Article  Google Scholar 

  • Hansen P J. 1992. Prey size selection, feeding rates and growth dynamics of heterotrophic dinoflagellates with special emphasis on Gyrodinium spirale. Mar. Biol., 114 (2): 327–334.

    Article  Google Scholar 

  • He G N, Zhang H, King J D, Blankenship R E. 2014. Structural analysis of the homodimeric reaction center complex from the photosynthetic green sulfur bacterium Chlorobaculum tepidum. Biochemistry, 53 (30): 4 924–4 930.

    Article  Google Scholar 

  • Hillebrand H, Dürselen C D, Kirschtel D, Zohary T, Pollingher U. 1999. Biovolume calculation for pelagic and benthic microalgae. J. Phycol., 3 5 (2): 403–424.

    Article  Google Scholar 

  • Hutchinson G E. 1937. A contribution to the limnology of arid regions: primarily founded on observations made in the Lahontan Basin. Trans. Connecticut Acad. Arts Sci., 33: 47–132.

    Google Scholar 

  • Il’yash L V, Belevich T A, Matorin D N. 2013. Fluorescence parameters of White Sea phytoplankton under different nitrogen sources. Moscow Univ. Biol. Sci. Bull., 68 (1): 44–48.

    Article  Google Scholar 

  • Jeong H J, Seong K A, Yoo D Y, Kim T H, Kang N S, Kim S, Park J Y, Kim J S, Kim G H, Song J Y. 2008. Feeding and grazing impact by small marine heterotrophic dinoflagellates on heterotrophic bacteria. J. Eukaryot. Microbiol., 55 (4): 271–288.

    Article  Google Scholar 

  • John D M, Whitton B A, Brook A J. 2002. The Freshwater Algal Flora of the British Isles: An Identification Guide to Freshwater and Terrestrial Algae. Cambridge University Press, Cambridge. 702p.

    Google Scholar 

  • Kharcheva A V, Krasnova E D, Voronov D A, Patsaeva S V. 2015. Spectroscopic study of the microbial community in chemocline zones of relic meromictic lakes separating from the White Sea. In: Proceedings of SPIE 9448, Saratov Fall Meeting 2014: Optical Technologies in Biophysics and Medicine XVI; Laser Physics and Photonics XVI; and Computational Biophysics. SPIE, Saratov, Russian Federation, https://doi.org/10.1117/12.2180066.

    Google Scholar 

  • Kharcheva A V, Zhiltsova A A, Lunina O N, Savvichev A S, Patsaeva S V. 2016. Quantification of two forms of green sulfur bacteria in their natural habitat using bacteriochlorophyll fluorescence spectra. In: Proceedings of SPIE 9917, Saratov Fall Meeting 2015: Third International Symposium on Optics and Biophotonics and Seventh Finnish–Russian Photonics and Laser Symposium (PALS). SPIE, Saratov, Russian Federation, https://doi. org/10.1117/12.2229848.

    Google Scholar 

  • Kokryatskaya N M, Zabelina S A, Savvichev A S, Morev O Y, Vorobjeva T Y. 2012. Seasonal biogeochemical and microbiological studies of small lakes in taiga zone of Northwestern Russian (Arkhangelsk Province). Water Resour., 39 (1): 105–117.

    Article  Google Scholar 

  • Kondo R, Nakagawa A, Mochizuki L, Osawa K, Fujioka Y, Butani J. 2009. Dominant bacterioplankton populations in the meromictic Lake Suigetsu as determined by denaturing gradient gel electrophoresis of 16S rRNA gene fragments. Limnology, 10 (1): 63–69.

    Article  Google Scholar 

  • Krasnova E D, Kharcheva A V, Milyutina I A, Voronov D A, Patsaeva S V. 2015a. Study of microbial communities in redox zone of meromictic lakes isolated from the White Sea using spectral and molecular methods. J. Mar. Biol. Assoc. UK, 95 (8): 1 579–1 590.

    Article  Google Scholar 

  • Krasnova E D, Pantyulin A N, Belevich T A, Voronov D A, Demidenko N A, Zhitina L S, Ilyash L V, Kokryatskaya N M, Lunina O N, Mardashova M V, Prudkovsky A A, Savvichev A S, Filippov A S, Shevchenko V P. 2013. Multidisciplinary studies of the separating lakes at different stage of isolation from the White Sea performed in March 2012. Oceanolog y, 53 (5): 639–642.

    Article  Google Scholar 

  • Krasnova E D, Pantyulin A N, Matorin D N, Todorenko D A, Belevich T A, Milyutina I A, Voronov D A. 2014. Cryptomonad alga Rhodomonas sp. ( Cryptophyta, Pyrenomonadaceae ) bloom in the redox zone of the basins separating from the White Sea. Microbiology, 83 (3): 270–277.

    Article  Google Scholar 

  • Krasnova E, Voronov D, Frolova N, Pantyulin A, Samsonov T. 2015b. Salt lakes separated from the White Sea. EARSeL eProceedings, 14 (S1): 8–22.

    Google Scholar 

  • Lauro F M, DeMaere M Z, Yau S, Brown M V, Ng C, Wilkins D, Raftery M J, Gibson J A, Andrews–Pfannkoch C, Lewis M, Hoffman J M, Thomas T, Cavicchioli R. 2011. An integrative study of a meromictic lake ecosystem in Antarctica. ISME J., 5 (5): 879–895.

    Article  Google Scholar 

  • Laybourn–Parry J, Marshall W A. 2003. Photosynthesis, mixotrophy and microbial plankton dynamics in two high Arctic lakes during summer. Polar Biol., 26 (8): 517–524.

    Article  Google Scholar 

  • Laybourn–Parry J, Roberts E C, Bell E M. 2000. Mixotrophy as a survival strategy in Antarctic lakes. In: Davidson W, Howard–Williams C, Broady P eds. Antarctic Ecosystems: Models for Wider Ecological Understanding. The Caxton Press, Christchurch. p.33–40.

  • Laybourn–Parry J. 2002. Survival mechanisms in Antarctic lakes. Phil os. Trans. R oy. Soc. Biol. Sic., 357 (1423): 863–869.

    Article  Google Scholar 

  • Ludlam S D. 1996. The comparative limnology of high arctic, coastal, meromictic lakes. J. Paleolimnol., 16 (2): 111–131.

    Google Scholar 

  • Lunina O N, Savvichev A S, Krasnova E D, Kokryatskaya N M, Veslopolova E F, Kuznetsov B B, Gorlenko V M. 2016. Succession processes in the anoxygenic phototrophic bacterial community in lake Kislo–Sladkoe (Kandalaksha bay, White Sea). Microbiology, 85 (5): 570–582.

    Article  Google Scholar 

  • Matorin D N, Antal T K, Ostrowska M, Rubin A B, Ficek D, Majchrowski R. 2004. Chlorophyll fluorimetry as a method for studying light absorption by photosynthetic pigments in marine algae. Oceanologia, 46 (4): 519–531.

    Google Scholar 

  • Matorin D N, Todorenko D A, Seifullina N K, Zayadan B K, Rubin A B. 2013. Effect of silver nanoparticles on the parameters of chlorophyll fluorescence and P 700 reaction in the green alga Chlamydomonas reinhardtii. Microbiology, 82 (6): 809–814.

    Article  Google Scholar 

  • Menden–Deuer S, Lessard E J. 2000. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol. Oceanogr., 45 (3): 569–579.

    Article  Google Scholar 

  • Moiseenko T I, Gashkina N A. 2010. Formirovanie Khimicheskogo Sostava Vod Ozer v Usloviyakh Izmeneniya Okruzhayushchey Sredy [The Formation of the Chemical Composition of Lakes Water in a Changing Environment]. Nauka, Moscow. (in Russian)

    Google Scholar 

  • Mori Y, Kataoka T, Okamura T, Kondo R. 2013. Dominance of green sulfur bacteria in the chemocline of the meromictic Lake Suigetsu, Japan, as revealed by dissimilatory sulfite reductase gene analysis. Arch. Microbiol., 195 (5): 303–312.

    Article  Google Scholar 

  • Nakajima Y, Shimizu H, Ogawa N O, Sakamoto T, Okada H, Koba K, Kitazato H, Ohkouchi N. 2004. Vertical distributions of stable isotopic compositions and bacteriochlorophyll homologues in suspended particulate matter in saline meromictic Lake Abashiri. Limnology, 5 (3): 185–189.

    Article  Google Scholar 

  • Neklyudov I M, Borts B V, Polevich O V, Tkachenko V I, Shilyaev B A. 2006. An alternative hydrogen sulfide energy of Black sea. The state, problems and perspectives. Int. Sci. J. Altern. Energy Ecol. Ecology ( Sarov, Russ. Fed.), 12 (44): 23–30.

    Google Scholar 

  • Okada M, Taniuchi Y, Murakami A, Takaichi S, Ohtake S, Ohki K. 2007. Abundance of picophytoplankton in the halocline of a meromictic lake, Lake Suigetsu, Japan. Limnology, 8 (3): 271–280.

    Article  Google Scholar 

  • Oren A, Padan E, Malkin S. 1979. Sulfide inhibition of photosystem II in cyanobacteria (blue–green algae) and tobacco chloroplasts. Biochim. Biophys. Acta, 546 (2): 270–279.

    Article  Google Scholar 

  • Orf G S, Blankenship R E. 2013. Chlorosome antenna complexes from green photosynthetic bacteria. Photosynth. Res., 116 (2–3): 315–331.

    Article  Google Scholar 

  • Overmann J, Beatty J T, Hall K J, Pfennig N, Northcote T G. 1991. Characterization of a dense, purple sulfur bacterial layer in a meromictic salt lake. Limnol. Oceanogr., 36 (5): 846–859.

    Article  Google Scholar 

  • Overmann J, Garcia–Pichel F. 2000. The phototrophic way of life. In: Rosenberg E, DeLong E F, Lory S, Stackebrand E, Thompson F eds. The Prokaryotes: Prokaryotic Communities and Ecophysiology. Springer, New York. p.203–257.

  • Pancaldi S, Baldisserotto C, Ferroni L, Bonora A, Fasulo M P. 2002. Room temperature microspectrofluorimetry as a useful toolfor studying the assembly of the PSII chlorophyll–protein complexes in single living cells of etiolated Euglena gracilis Klebs during the greening process. J. Exp. Bot., 53 (375): 1 753–1 763.

    Article  Google Scholar 

  • Rogozin D Y, Trusova M Y, Khromechek E B, Degermendzhy A G. 2010. Microbial community of the chemocline of the meromictic lake Shunet (Khakassia, Russia) during summer stratification. Microbiology, 79 (2): 253–261.

    Article  Google Scholar 

  • Sapozhnikov V V. 2003. Rukovodstvo po khimicheskomu analizu morskikh i presnykh vod pri ekologicheskom monitoringe rybokhozyaistvennykh vodoemov i perspektivnykh dlya promysla raionov Mirovogo okeana (Guide on Chemical Analysis of Sea and Fresh Water in the Environmental Monitoring of Water Bodies Used for Fishery and Commercially Promising Regions of the World Ocean). VNIRO, Moscow. 202p. (in Russian)

    Google Scholar 

  • Shaporenko S I, Koreneva G A, Pantyulin A N, Pertsova N M. 2005. Characteristics of the ecosystems of water bodies separating from Kandalaksha Bay of the White Sea. Water Resour., 32 (5): 469–483.

    Article  Google Scholar 

  • Simmonds B, Wood S A, Özkundakci D, Hamilton D P. 2015. Phytoplankton succession and the formation of a deep chlorophyll maximum in a hypertrophic volcanic lake. Hydrobiologia, 745 (1): 297–312.

    Article  Google Scholar 

  • Strasser R J, Tsimilli–Michael M, Srivastava A. 2004. Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou G C, Govindjee eds. Chlorophyll a Fluorescence: a signature of Photosynthesis. Springer, Dordrecht. p.321–362.

    Book  Google Scholar 

  • Strelkov P, Shunatova N, Fokin M, Usov N, Fedyuk M, Malavenda S, Lubina O, Poloskin A, Korsun S. 2014. Marine Lake Mogilnoe (Kildin Island, the Barents Sea): one hundred years of solitude. Polar Biol., 37 (3): 297–310.

    Article  Google Scholar 

  • Subetto D A, Shevchenko V P, Ludikova A V, Kuznetsov D D, Sapelko T V, Lisitsyn A P, Evzerov V Y, Van Beek P, Souhaut M, Subetto G D. 2012. Chronology of isolation of the Solovetskii Archipelago lakes and current rates of lake sedimentation. Dokl. Earth Sci., 446 (1): 1 042–1 048.

    Article  Google Scholar 

  • Tonolla M, Peduzzi S, Demarta A, Peduzzi R, Hahn D. 2004. Phototropic sulfur and sulfate–reducing bacteria in the chemocline of meromictic Lake Cadagno, Switzerland. J. Limnol., 63 (2): 161–170.

    Article  Google Scholar 

  • Van Der Weij–De Wit C D, Doust A B, Van Stokkum I H M, Dekker J P, Wilk K E, Curmi P M G, Scholes G D, Van Grondelle R. 2006. How energy funnels from the phycoerythrin antenna complex to photosystem I and photosystem II in cryptophyte Rhodomonas CS24 cells. J. Phys. Chem. B, 110 (49): 25 066–25 073.

    Article  Google Scholar 

  • Van Hove P, Belzile C, Gibson J A, Vincent W F. 2006. Coupled landscape–lake evolution in High Arctic Canada. Can. J. Earth Sci., 43 (5): 533–546.

    Article  Google Scholar 

  • Vincent W F, Laybourn–Parry J. 2008. Polar Lakes and Rivers: Limnology of Arctic and Antarctic Aquatic Ecosystems. Oxford University Press, Oxford. 346p.

    Google Scholar 

  • Weller D, Doemel W, Brock T D. 1975. Requirement of low oxidation–reduction potential for photosynthesis in a bluegreen alga ( Phormidium sp.). Arch. Microbiol., 104 (1): 7–13.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena D. Krasnova.

Additional information

Supported by the RFBR (Nos. 16-05-00548-a, 16-05-00502-a)

Electronic supplementary material

343_2018_7323_MOESM1_ESM.pdf

The characteristic pattern of multiple colored layers in coastal stratified lakes in the process of separation from the White Sea

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krasnova, E.D., Matorin, D.N., Belevich, T.A. et al. The characteristic pattern of multiple colored layers in coastal stratified lakes in the process of separation from the White Sea. J. Ocean. Limnol. 36, 1962–1977 (2018). https://doi.org/10.1007/s00343-018-7323-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-018-7323-2

Keyword

Navigation