Skip to main content
Log in

Phytoplankton succession and the formation of a deep chlorophyll maximum in a hypertrophic volcanic lake

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Deep chlorophyll maxima (DCM) are a common feature of poorly mixed, low-productivity lakes, but are less commonly observed in eutrophic systems. This study investigates the transition from a late-spring surface chlorophyll maximum (SCM) to an early summer DCM in a hypertrophic lake, identifying the phenology and mechanisms responsible for the transition and how the DCM was maintained in this hypertrophic system. Data and samples were collected weekly during summer and monthly in winter at five sampling stations in monomictic Lake Ōkaro, North Island, New Zealand. Additional samples were collected on two occasions at c. 3–5 h intervals over 24 h at a single station, corresponding to periods with a SCM and DCM, respectively. The mean DCM depth was correlated with mean thermocline depth, and euphotic depth (z eu) continuously exceeded the depths of both the DCM and thermocline. The decline in the SCM and the transition to a DCM population were coincident with a gradual depletion of dissolved inorganic nutrients in surface waters and increased light penetration into the nutrient-rich hypolimnion. This study demonstrated that there are similarities between DCMs in lakes of high and low productivity, relating to the interplay between light, nutrients and thermal stratification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abbott, M. R., K. L. Denman, T. M. Powell, P. J. Richerson, R. C. Richards & C. R. Goldman, 1984. Mixing and the dynamics of the deep chlorophyll maximum in Lake Tahoe. Limnology and Oceanography 29: 862–878.

    Article  CAS  Google Scholar 

  • American Public Health Association, 2005. Standard Methods for the Examination of Water and Wastewater, 21st edn. American Public Health Association (APHA), American Water Works Association (AWWA) & Water Environment Federation (WEF), Washington, DC.

  • Arenovski, A. L., 1994. Distribution, abundance and ecology of mixotrophic algae in marine and freshwater plankton communities. Woods Hole Oceanographic Institution, Massachusetts Institute of Technology, Massachusetts.

    Book  Google Scholar 

  • Baker, P. D. & L. D. Fabbro, 1999. A guide to the identification of common blue-green algae (Cyanoprokaryotes) in Australian freshwaters. Cooperative Research Centre for Freshwater Biology, Albury.

    Google Scholar 

  • Bennion, H., S. Juggins & N. J. Anderson, 1996. Predicting epilimnetic phosphorus concentrations using an improved diatom-based transfer function and its application to lake eutrophication management. Environmental Science & Technology 30: 2004–2007.

    Article  CAS  Google Scholar 

  • Bloem, J. & M. J. B. Bar-Gilissen, 1989. Bacterial activity and protozoan grazing potential in a stratified lake. Limnology and Oceanography 34: 297–309.

    Article  Google Scholar 

  • Bormans, M., B. S. Sherman & I. T. Webster, 1999. Is buoyancy regulation in cyanobacteria an adaptation to exploit separation of light and nutrients? Marine and Freshwater Research 50: 897–906.

    Article  Google Scholar 

  • Borowiak, D., K. Nowiński, J. Barańczuk, R. Skowron, A. Solarczyk & W. Marszelewski, 2010. Interactions Between Areal Hypolimnetic Oxygen Depletion Rate and Trophic State of Lakes in Northern Poland. BALWOIS, Ohrid.

    Google Scholar 

  • Cantin, A., B. E. Beisner, J. M. Gunn, Y. T. Prairie & J. G. Winter, 2011. Effects of thermocline deepening on lake plankton communities. Canadian Journal of Fisheries and Aquatic Sciences 68: 260–276.

    Article  Google Scholar 

  • Cappenberg, T. E., 1972. Ecological observations on heterotrophic, methane oxidizing and sulfate reducing bacteria in Pond. Hydrobiologia 40: 471–485.

    Article  Google Scholar 

  • Caron, D. A., K. G. Porter & R. W. Sanders, 1990. Carbon, nitrogen, and phosphorus budgets for the mixotrophic phytoflagellate Poterioochromonas malhamensis (Chrysophyceae) during bacterial ingestion. Limnology and Oceanography 35: 433–443.

    Article  CAS  Google Scholar 

  • Carpenter, S. R., N. F. Caraco, D. L. Correll, R. W. Howarth, A. N. Sharpley & V. H. Smith, 1998. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications 8: 559–568.

    Article  Google Scholar 

  • Carraro, E., N. Guyennon, D. Hamilton, L. Valsecchi, E. C. Manfredi, G. Viviano, F. Salerno, G. Tartari & D. Copetti, 2012. Coupling high-resolution measurements to a three-dimensional lake model to assess the spatial and temporal dynamics of the cyanobacterium Planktothrix rubescens in a medium-sized lake. Hydrobiologia 698: 77–95.

    Article  CAS  Google Scholar 

  • Clegg, M. R., S. C. Maberly & R. I. Jones, 2004. Dominance and compromise in freshwater phytoplanktonic flagellates: the interaction of behavioural preferences for conflicting environmental gradients. Functional Ecology 18: 371–380.

    Article  Google Scholar 

  • Coon, T. G., M. M. Lopez, P. J. Richerson, T. M. Powell & C. R. Goldman, 1987. Summer dynamics of the deep chlorophyll maximum in Lake Tahoe. Journal of Plankton Research 9: 327–344.

    Article  CAS  Google Scholar 

  • Cullen, J. J., 1982. The deep chlorophyll maximum: comparing vertical profiles of chlorophyll A. Canadian Journal of Fisheries and Aquatic Sciences 39: 791–803.

    Article  CAS  Google Scholar 

  • Dennis, M., 2011. The role of viral systems in nutrient cycling. Master of Science in Biological Sciences, The University of Waikato, New Zealand.

    Google Scholar 

  • Dryden, S. & W. Vincent, 1986. Phytoplankton species of Lake Ōkaro, central North Island. New Zealand Journal of Marine and Freshwater Research 20: 191–198.

    Article  Google Scholar 

  • Fogg, G. E. & A. E. Walsby, 1971. Buoyancy regulation and the growth of planktonic blue-green algae. Mitteilungen der Internationalen Vereinigung für Limnologie 19: 182–188.

    Google Scholar 

  • Forsyth, D. J., S. J. Dryden, M. R. James & W. F. Vincent, 1988. The Lake Ōkaro ecosystem. 1. Background limnology. New Zealand Journal of Marine and Freshwater Research 22: 17–27.

    Article  CAS  Google Scholar 

  • Ganf, G. & R. Oliver, 1982. Vertical separation of light and available nutrients as a factor causing replacement of green algae by blue-green algae in the plankton of a stratified lake. Journal of Ecology 70: 829–844.

    Article  Google Scholar 

  • Gervais, F., 1998. Ecology of cryptophytes coexisting near a freshwater chemocline. Freshwater Biology 39: 61–78.

    Article  Google Scholar 

  • Grigorszky, I., J. Padisák, G. Borics, C. Schitchen & G. Borbély, 2003. Deep chlorophyll maximum by Ceratium hirundinella (O. F. Müller) Bergh in a shallow oxbow in Hungary. Hydrobiologia 506: 209–212.

    Article  Google Scholar 

  • Hamilton, D. P., K. R. O’Brien, M. A. Burford & J. D. Brookes, 2010. Vertical distributions of chlorophyll in deep, warm monomictic lakes. Aquatic Sciences-Research Across Boundaries 72: 295–307.

    Article  CAS  Google Scholar 

  • Hardy, L., 2005. Lake Ōkaro: Explosions and erosion. BSc (Hons) Thesis, The University of Otago.

  • Heaney, S. I. & J. F. Talling, 1980. Dynamic aspects of dinoflagellate distribution patterns in a small productive lake. Journal of Ecology 68: 75–94.

    Article  Google Scholar 

  • Hillebrand, H., C. D. Dürselen, D. Kirschtel, D. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403–424.

    Article  Google Scholar 

  • Hoare, R. A. & R. H. Spigel, 1987. Water balances, mechanics and thermal properties. In Vant, W. N. (ed.), Lake Managers Handbook Water and Soil Miscellaneous Publication 103. Ministry of Works and Development, Wellington: 41–58.

    Google Scholar 

  • Imberger, J. & R. H. Spigel, 1987. Circulation and mixing in Lake Rotongaio and Lake Ōkaro under conditions of light to moderate winds - preliminary results. New Zealand Journal of Marine and Freshwater Research 21: 515–519.

    Article  Google Scholar 

  • Johannessen, T. & E. Dahl, 1996. Declines in oxygen concentrations along the Norwegian Skagerrak Coast, 1927–1993: A signal of ecosystem changes due to eutrophication? Limnology and Oceanography 41: 766–778.

    Article  CAS  Google Scholar 

  • Jones, H., 1997. A classification of mixotrophic protists based on their behaviour. Freshwater Biology 37: 35–43.

    Article  Google Scholar 

  • Joosten, A. M. T., 2006. Flora of the Blue-Green Algae of the Netherlands: The Non-filamentous Species of Inland Waters. KNNV Publishing, Utrecht.

    Google Scholar 

  • Kalff, J., 2002a. Inorganic carbon and pH. In Ryu, T. (ed.), Limnology. Prentice-Hall Inc, New Jersey.

    Google Scholar 

  • Kalff, J., 2002b. Water movements. In Ryu, T. (ed.), Limnology. Prentice-Hall Inc, New Jersey.

    Google Scholar 

  • Kamykowski, D. & H. Yamazaki, 1997. A study of metabolism-influenced orientation in the diel vertical migration of marine dinoflagellates. Limnology and Oceanography 42: 1189–1202.

    Article  Google Scholar 

  • Kellar, P. E. & H. W. Paerl, 1980. Physiological adaptations in response to environmental stress during an N2-fixing Anabaena bloom. Applied Environmental Microbiology 40: 587–595.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Khan, F. A. & A. A. Ansari, 2005. Eutrophication - An ecological vision. The Botanical Review 71: 449–482.

    Article  Google Scholar 

  • Klausmeier, C. A. & E. Litchman, 2001. Algal games: the vertical distribution of phytoplankton in poorly mixed water columns. Limnology and Oceanography 46: 1998–2007.

    Article  Google Scholar 

  • Kobayashi, M., T. Kakizono, K. Yamaguchi, N. Nishio & S. Nagai, 1992. Growth and astaxanthin formation of Haematococcus pluvialis in heterotrophic and mixotrophic conditions. Journal of Fermentation and Bioengineering 74: 17–20.

    Article  CAS  Google Scholar 

  • Kromkamp, J. & A. E. Walsby, 1990. A computer model of buoyancy and vertical migration in cyanobacteria. Journal of Plankton Research 12: 161–183.

    Article  Google Scholar 

  • Kufel, L. & K. Kalinowska, 1997. Metalimnetic gradients and the vertical distribution of phosphorus in a eutrophic lake. Archiv für Hydrobiologie 140: 309–320.

    CAS  Google Scholar 

  • Lee, Y.-K., S.-Y. Ding, C.-H. Hoe & C.-S. Low, 1996. Mixotrophic growth of Chlorella sorokiniana in outdoor enclosed photobioreactor. Journal of Applied Phycology 8: 163–169.

    Article  Google Scholar 

  • Li, A., D. K. Stoecker & D. W. Coats, 2000. Mixotrophy in Gyrodinium galatheanum (Dinophyceae): grazing responses to light intensity and inorganic nutrients. Journal of Phycology 36: 33–45.

    Article  CAS  Google Scholar 

  • Longhurst, A. R., 1976. Interactions between zooplankton and phytoplankton profiles in the eastern tropical Pacific Ocean. Deep Sea Research and Oceanographic Abstracts 23: 729–754.

    Article  Google Scholar 

  • Mcdonough, R. J., R. W. Sanders, K. G. Porter & D. L. Kirchman, 1986. Depth distribution of bacterial production in a stratified lake with an anoxic hypolimnion. Applied Environmental Microbiology 52: 992–1000.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meersche, K. V. D., J. J. Middelburg, K. Soetaert, P. V. Rijswijk, H. T. S. Boschker & C. H. R. Heip, 2004. Carbon–nitrogen coupling and algal–bacterial interactions during an experimental bloom: modeling a 13c tracer experiment. Limnology and Oceanography 49: 862–878.

    Article  Google Scholar 

  • Modenutti, B., E. Balseiro, C. Callieri, C. Queimaliños & R. Bertoni, 2004. Increase in photosynthetic efficiency as a strategy of planktonic organisms exploiting deep lake layers. Freshwater Biology 49: 160–169.

    Article  CAS  Google Scholar 

  • Nygaard, K. & A. Tobiesen, 1993. Bacterivory in algae: a survival strategy during nutrient limitation. Limnology and Oceanography 38: 273–279.

    Article  Google Scholar 

  • Olenina, I., S. Hajdu, L. Edler, A. Andersson, N. Wasmund, S. Busch, J. Göbel, S. Gromisz, S. Huseby, M. Huttunen, A. Jaanus, P. Pirkko Kokkonen, I. Ledaine & E. Niemkiewicz, 2004. Biovolumes and size-classes of phytoplankton in the Baltic Sea. Baltic Marine Environment Protection Commission, Helsinki Commission.

    Google Scholar 

  • Ostrovsky, I. & Y. Z. Yacobi, 1999. Organic matter and pigments in surface sediments: possible mechanisms of their horizontal distributions in a stratified lake. Canadian Journal of Fisheries and Aquatic Sciences 56: 1001–1010.

    Article  CAS  Google Scholar 

  • Özkundakci, D., D. P. Hamilton & P. Scholes, 2010. Effect of intensive catchment and in-lake restoration procedures on phosphorus concentrations in a eutrophic lake. Ecological Engineering 36: 396–405.

    Article  Google Scholar 

  • Özkundakci, D., D. P. Hamilton & M. M. Gibbs, 2011. Hypolimnetic phosphorus and nitrogen dynamics in a small, eutrophic lake with a seasonally anoxic hypolimnion. Hydrobiologia 661: 5–20.

    Article  Google Scholar 

  • Padisák, J. F., A. R. Barbosa, R. Koschel & L. Krienitz, 2003. Deep layer cyanoprokaryota in temperate and tropical lakes. Archive for Hydrobiology - Advances in Limnology 58: 175–199.

    Google Scholar 

  • Padisák, J., W. Scheffler, R. Koschel & L. Krienitz, 2004. Seasonal patterns and interannual variability of phytoplankton in Lake Stechlin (1994–2003). Leibniz-Institute of Freshwater Ecology and Inland Fisheries: Annual Report 2003. Berlin.

  • Paerl, H. W. & J. F. Ustach, 1982. Blue-green algal scums: an explanation for their occurrence during freshwater blooms. Limnology and Oceanography 27: 212–217.

    Article  CAS  Google Scholar 

  • Paul, W. J., 2006. Carbon and Nitrogen Transfers Between Phytoplankton and Bacteria, and Management of Internal Nutrient Loads with Alum in Lake Ōkaro. The University of Waikato, New Zealand.

    Google Scholar 

  • Paul, W. J., D. P. Hamilton & M. M. Gibbs, 2008. Low-dose alum application trialled as a management tool for internal nutrient loads in Lake Ōkaro, New Zealand. New Zealand Journal of Marine and Freshwater Research 42: 207–217.

    Article  CAS  Google Scholar 

  • Pérez-Martínez, C. & P. Sánchez-Castillo, 2002. Winter dominance of Ceratium hirundinella in a southern north-temperate reservoir. Journal of Plankton Research 24: 89–96.

    Article  Google Scholar 

  • Présing, M., S. Herodek, T. Preston & L. Vörös, 2001. Nitrogen uptake and the importance of internal nitrogen loading in Lake Balaton. Freshwater Biology 46: 125–139.

    Article  Google Scholar 

  • Raven, J. A. & K. Richardson, 1984. Dinophyte flagella: a cost-benefit analysis. New Phytologist 98: 259–276.

    Article  Google Scholar 

  • Read, J. S., D. P. Hamilton, I. D. Jones, K. Muraoka, L. A. Winslow, R. Kroiss, C. H. Wu & E. Gaiser, 2011. Derivation of lake mixing and stratification indices from high-resolution lake buoy data. Environmental Modelling & Software 26: 1325–1336.

    Article  Google Scholar 

  • Regel, R. H., J. D. Brookes & G. G. Ganf, 2004. Vertical migration, entrainment and photosynthesis of the freshwater dinoflagellate Peridinium cinctum in a shallow urban lake. Journal of Plankton Research 26: 143–157.

    Article  CAS  Google Scholar 

  • Reynolds, C. S., 1984. The Ecology of Freshwater Phytoplankton. Cambridge University Press, Cambridge.

    Google Scholar 

  • Reynolds, C. S., 1997a. Resource gathering in pelagic plants. In Kinne, O. (ed.), Excellence in Ecology. Ecology Institute, Oldendorf.

    Google Scholar 

  • Reynolds, C. S., 1997b. Succession in pelagic communities. In Kinne, O. (ed.), Excellence in Ecology. Ecology Institute, Oldendorf.

    Google Scholar 

  • Reynolds, C. S., G. H. M. Jaworski, H. A. Cmiech & G. F. Leedale, 1981. On the annual cycle of the blue-green alga Microcystis aeruginosa Kutz. emend. Elenkin. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences 293: 419–477.

    Article  Google Scholar 

  • Ryan, E., 2005. Phytoplankton dynamics in North Island lakes. Doctor of Philosophy, The University of Waikato, New Zealand.

    Google Scholar 

  • Serizawa, H., T. Amemiya & K. Itoh, 2010. Effects of buoyancy, transparency and zooplankton feeding on surface maxima and deep maxima: Comprehensive mathematical model for vertical distribution in cyanobacterial biomass. Ecological Modelling 221: 2028–2037.

    Article  CAS  Google Scholar 

  • Sherman, B. S., I. T. Webster, G. T. Jones & R. L. Oliver, 1998. Transitions between Aulacoseira and Anabaena dominance in a turbid river weir pool. Limnological Oceanography 43: 1902–1915.

    CAS  Google Scholar 

  • Sorrell, B., 2010. Nutrients. In Clarkson, B. & M. Peters (eds), A Handbook for New Zealand Freshwater Systems. Manaaki Whenua Press, Wetland restoration.

    Google Scholar 

  • Spalinger, K. & K. Bouwens, 2003. The roles of phosphorus and nitrogen in lake ecosystems. Regional Information Report No. 4K03-42. Alaska Department of Fish and Game. Kodiak, Alaska.

  • Talling, J. F., H. J. Spencer & H. R. Morison, 2005. The ‘shock period’: dynamics of phytoplankton during the spring–summer transition of a stratifying English lake. Hydrobiologia 533: 15–28.

    Article  Google Scholar 

  • Tittel, J. R., V. Bissinger, B. Zippel, U. Gaedke, E. Bell, A. Lorke & N. Kamjunke, 2003. Mixotrophs combine resource use to outcompete specialists: implications for aquatic food webs. Proceedings of the National Academy of Sciences of the United States of America 100: 12776–12781.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ukeles, R. & W. E. Rose, 1976. Observations on organic carbon utilization by photosynthetic marine microalgae. Marine Biology 37: 11–28.

    Article  CAS  Google Scholar 

  • Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen der Internationale Vereinigung für Theoretische und Angewandte Limnologie 9: 1–38.

    Google Scholar 

  • White, E., G. Payne, S. Pickmere & P. Woods, 1991. Seasonal variation in nutrient limitation of the algal community in Lake Horowhenua, New Zealand. New Zealand Journal of Marine and Freshwater Research 25: 311–316.

    Article  CAS  Google Scholar 

  • Whittington, J., B. Sherman, D. Green & R. L. Oliver, 2000. Growth of CPhytoplankton-Methoderatium hirundinella in a subtropical Australian reservoir: the role of vertical migration. Journal of Plankton Research 22: 1025–1045.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the New Zealand Ministry of Business, Innovation and Employment (UOWX0505; Lake Biodiversity Restoration). The authors thank Barry O’Brien (University of Waikato) for the SEM, Marie Dennis (SCION) for assistance with phytoplankton identification and enumeration, and Weimin Jiang (Cawthron) for assistance with contour plots. We thank Hedy Kling (Algal Taxonomy & Ecology Inc) and Glenn McGregor (Queensland Department of Science, Information Technology, Innovation and the Arts) for assistance in the identification of the unknown colonial phytoplankton.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Simmonds.

Additional information

Handling editor: Luigi Naselli-Flores

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 217 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simmonds, B., Wood, S.A., Özkundakci, D. et al. Phytoplankton succession and the formation of a deep chlorophyll maximum in a hypertrophic volcanic lake. Hydrobiologia 745, 297–312 (2015). https://doi.org/10.1007/s10750-014-2114-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-014-2114-z

Keywords

Navigation