Skip to main content
Log in

Temperature, pressure, and bath gas composition dependence of fluorescence spectra and fluorescence lifetimes of toluene and naphthalene

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Time-resolved fluorescence spectra of gas-phase toluene and naphthalene were investigated upon picosecond laser excitation at 266 nm as a function of temperature (toluene 296–1,025 K, naphthalene 374–1,123 K), pressure (1–10 bar), and bath gas composition (varying concentrations of N2, O2, and CO2) with a temporal resolution of 50 ps. In the investigated temperature range, the fluorescence spectra of both toluene and naphthalene show a significant red-shift, whereas the fluorescence lifetime decreases with increasing temperature, more pronounced for toluene than for naphthalene. Increasing the total pressure of either N2 or CO2 from atmospheric to 10 bar leads to an increase by about 20 % (naphthalene at 373 K) and a decrease by 60 % (toluene at 575 K) in fluorescence lifetimes, respectively. As expected, at atmospheric pressure collisions with O2 shorten the fluorescence lifetime of both toluene and naphthalene significantly, e.g., by a factor of 30 and 90 when changing O2 partial pressure at 373 K from 0 to 0.21 bar, respectively. The fluorescence model of Koban et al. (Appl Phys B 80: 777, 2005) for the dependence of the toluene quantum yield on temperature and O2 partial pressure at atmospheric pressure describes toluene fluorescence lifetimes well within its range of validity. The model is modified to satisfactorily predict effective toluene fluorescence lifetimes in N2 at pressures up to 10 bar. However, it still fails to predict the dependence at simultaneously elevated temperatures and pressures in air as bath gas. Similarly, an empirical model is presented for predicting (relative) fluorescence quantum yields and lifetimes of naphthalene. Although the fitting models have their shortcomings this publication presents a data set of great importance for practical LIF applications, e.g., in-cylinder mixture formation diagnostics in internal combustion engines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C. Schulz, V. Sick, Prog. Energy Combust. Sci. 31, 75 (2005)

    Article  Google Scholar 

  2. W. Koban, C. Schulz, SAE technical paper series 2005-01-2091 (2005)

  3. M. Orain, P. Baranger, B. Rossow, F. Grisch, Appl. Phys. B 102, 163 (2011)

    Article  ADS  Google Scholar 

  4. P. Baranger, M. Orain, F. Grisch, AIAA paper 2005–828 (2005)

  5. W. Koban, J.D. Koch, R.K. Hanson, C. Schulz, Phys. Chem. Chem. Phys. 6, 2940 (2004)

    Article  Google Scholar 

  6. W. Koban, J.D. Koch, R.K. Hanson, C. Schulz, Appl. Phys. B 80, 777 (2005)

    Article  ADS  Google Scholar 

  7. W. Koban, J.D. Koch, R.K. Hanson, C. Schulz, Appl. Phys. B 80, 147 (2005)

    Article  ADS  Google Scholar 

  8. B. Rossow, Photophysical processes of organic fluorescent molecules and kerosene—application to combustion engines, in dissertation thesis. Institut des Sciences Moléculaires d’Orsay, Université Paris-Sud 11, Paris, France (2011)

  9. M.C. Thurber, F. Grisch, B.J. Kirby, M. Votsmeier, R.K. Hanson, Appl. Opt. 37, 4963 (1998)

    Article  ADS  Google Scholar 

  10. B.H. Cheung, R.K. Hanson, Appl. Phys. B 106, 755 (2012)

    Article  ADS  Google Scholar 

  11. A.M. Bass, J. Chem. Phys. 18, 1403 (1950)

    Article  ADS  Google Scholar 

  12. J. Savard, Ann. Chim. 10, 287 (1929)

    Google Scholar 

  13. E. Wiedemann, G.C. Schmidt, Ann. Phys. 56, 18 (1895)

    Article  Google Scholar 

  14. A. Reimann, Ann. Phys. 80, 43 (1926)

    Article  Google Scholar 

  15. C.S. Burton, W.A. Noyes, J. Chem. Phys. 49, 1705 (1968)

    Article  ADS  Google Scholar 

  16. N. Nijegorodov, V. Vasilenko, P. Monowe, M. Masale, Spectrochim. Acta A 74, 188 (2009)

    Article  ADS  Google Scholar 

  17. K. Mohri, M. Luong, G. Vanhove, T. Dreier, C. Schulz, Appl. Phys. B 103, 707 (2011)

    Article  ADS  Google Scholar 

  18. J. E. Dec, W. Hwang, SAE technical paper series 2009-01-0650 (2009)

  19. M. Luong, R. Zhang, C. Schulz, V. Sick, Appl. Phys. B 91, 669 (2008)

    Article  ADS  Google Scholar 

  20. S.A. Kaiser, M.B. Long, Proc. Combust. Inst. 30, 1555 (2005)

    Article  Google Scholar 

  21. F. Ossler, T. Metz, M. Aldén, Appl. Phys. B 72, 479 (2001)

    Article  ADS  Google Scholar 

  22. J. Yoo, D. Mitchell, D.F. Davidson, R.K. Hanson, Exp. Fluids 49, 751 (2010)

    Article  Google Scholar 

  23. R. Devillers, G. Bruneaux, C. Schulz, Appl. Phys. B 96, 735 (2009)

    Article  ADS  Google Scholar 

  24. W. Koban, J.D. Koch, V. Sick, N. Wermuth, R.K. Hanson, C. Schulz, Proc. Combust. Inst. 30, 1545 (2005)

    Article  Google Scholar 

  25. S. Faust, T. Dreier, C. Schulz, Chem. Phys. 383, 6 (2011)

    Article  ADS  Google Scholar 

  26. F. Ossler, T. Metz, M. Aldén, Appl. Phys. B 72, 465 (2001)

    Article  ADS  Google Scholar 

  27. P. Avouris, W.M. Gelbart, M.A. El-Sayed, Chem. Rev. 77, 793 (1977)

    Article  Google Scholar 

  28. A. Ehn, B. Kaldvee, J. Bood, M. Aldén, Appl. Opt. 48, 2373 (2009)

    Article  ADS  Google Scholar 

  29. F.P. Zimmermann, W. Koban, C.M. Roth, D.-P. Herten, C. Schulz, Chem. Phys. Lett. 426, 248 (2006)

    Article  ADS  Google Scholar 

  30. G.M. Breuer, E.K.C. Lee, Chem. Phys. Lett. 14, 404 (1972)

    Article  ADS  Google Scholar 

  31. M. Jacon, C. Lardeux, R. Lopez-Delgado, A. Tramer, Chem. Phys. 24, 145 (1977)

    Article  Google Scholar 

  32. E.H. Kincaid, V. Worah, M.D. Schuh, J. Chem. Phys. 94, 4842 (1991)

    Article  ADS  Google Scholar 

  33. C.G. Hickman, J.R. Gascooke, W.D. Lawrance, J. Chem. Phys. 104, 4887 (1996)

    Article  ADS  Google Scholar 

  34. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd edn. (Springer Science + Business Media, LLC, New York, 2006)

  35. T.B. Settersten, A. Dreizler, R.L. Farrow, J. Chem. Phys. 117, 3173 (2002)

    Article  ADS  Google Scholar 

  36. T.B. Settersten, B.D. Patterson, J.A. Gray, J. Chem. Phys. 124, 234308 (2006)

    Article  ADS  Google Scholar 

  37. J.C. Hsieh, C.-S. Huang, E.C. Lim, J. Chem. Phys. 60, 4345 (1974)

    Article  ADS  Google Scholar 

  38. J. D. Koch, Fuel Tracer Photophysics for Quantitative Planar Laser-Induced Fluorescence, in dissertation thesis. Stanford University, Stanford, California, USA, 2005

  39. V. Modica, C. Morin, P. Guibert, Appl. Phys. B 87, 193 (2007)

    Article  ADS  Google Scholar 

  40. Y. He, E. Pollak, J. Chem. Phys. 116, 6088 (2002)

    Article  ADS  Google Scholar 

  41. H. Wadi, E. Pollak, J. Chem. Phys. 110, 11890 (1999)

    Article  ADS  Google Scholar 

  42. L.A. Barkova, V.V. Gruzinskii, M.N. Kaputerko, J. Appl. Spectr. 47, 186 (1987)

    Article  Google Scholar 

  43. G.S. Beddard, G.R. Fleming, O.L.J. Gijzeman, G. Porter, Proc. R. Soc. Lond. A 340, 519 (1974)

    Article  ADS  Google Scholar 

  44. R.E. Smalley, Annu. Rev. Phys. Chem. 34, 129 (1983)

    Article  ADS  Google Scholar 

  45. C.E. Otis, J.L. Knee, P.M. Johnson, J. Chem. Phys. 78, 2091 (1983)

    Article  ADS  Google Scholar 

  46. S.F. Fischer, A.L. Stanford, E.C. Lim, J. Chem. Phys. 61, 582 (1974)

    Article  ADS  Google Scholar 

  47. D. A. Rothamer, Developement and Application of Infrared and Tracer-Based Planar Laser-Induced Fluorescence Imaging Diagnostics, in dissertation thesis. Stanford University, Department of Mechanical Engineering, Stanford, California, USA, 2007

  48. E. Friesen, C. Gessenhardt, S. Kaiser, T. Dreier, C. Schulz, in LACSEA2012. San Diego, CA, USA, 2012

  49. A. Ehn, O. Johansson, A. Arvidsson, M. Aldén, J. Bood, Opt. Expr. 20, 3043 (2012)

    Article  ADS  Google Scholar 

  50. T. Ni, L.A. Melton, Appl. Spectr. 50, 1112 (1996)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge funding of this work by the Deutsche Forschungsgemeinschaft. The authors thank Quyen Dinh (University of Pennsylvania, USA) for experimental assistance during a summer internship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Faust.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faust, S., Tea, G., Dreier, T. et al. Temperature, pressure, and bath gas composition dependence of fluorescence spectra and fluorescence lifetimes of toluene and naphthalene. Appl. Phys. B 110, 81–93 (2013). https://doi.org/10.1007/s00340-012-5254-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-5254-8

Keywords

Navigation