Skip to main content

Advertisement

Log in

Copper-doped modified ZnO nanorods to tailor its light assisted charge transfer reactions exploited for photo-electrochemical and photo-catalytic application in environmental remediation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The amount of dopant concentration, alongwith the choice of dopant, is one of the most conducive factor for the favourable outcome for light driven activities of a material. The present paper reports on the synthesis of zinc oxide nanorods doped with different concentrations of copper (Cu–ZnO) by simple, low-cost mechanical assisted thermal decomposition process. The as synthesized samples were tested for visible light driven photo-electrochemical (PEC) and photocatalytic activities on various hazardous dyes using methylene blue (MB), methyl orange and mixed green dye (methyl thymol blue + methylene blue). The study helped us to reveal that highest degradation efficiency was achieved for Cu concentration of 5% in ZnO on MB (91.1% degradation in 40 min). Compared to pure ZnO, the photoactivity of 5% Cu–ZnO composites shows higher photodegradation of dyes. Moreover, the photocatalytic results were found consistent with PEC studies which showed maximum current generation of +9.4 mA for 5% Cu–ZnO (carried out under dark and illumination condition). The mechanism for this enhanced photoactivity has been proposed based on the relationship established between oxygen vacancies and defects generation in the material due to different doping concentrations that directly influence its photocatalytic efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R. Xu, Beilstein J. Nanotechnol. 5(1), 1071–1072 (2014)

    Google Scholar 

  2. H. Chen, L. Wang, Beilstein J. Nanotechnol. 5(1), 696–710 (2014)

    Google Scholar 

  3. B. Du Ahn, S. H. Oh, C. H. Lee, G. H. Kim, H. J. Kim, S. Y. Lee, J. Cryst. Growth 309(2), 128–133 (2007)

    Article  ADS  Google Scholar 

  4. E. Fortunato, L. Raniero, L. Silva, A. Goncalves, A. Pimentel, P. Barquinha, H. Aguas, L. Pereira, G. Goncalves, I. Ferreira, Sol. Energy Mater. Sol. Cells, 92(12), 1605–1610 (2008)

    Article  Google Scholar 

  5. Y. Liu, Y. Hu, M. Zhou, H. Qian, X. Hu, Appl. Catal. B Environ. 125, 425–431 (2012)

    Article  Google Scholar 

  6. K. Maeda, T. Takata, M. Hara, N. Saito, Y. Inoue, H. Kobayashi, K. Domen, J. Am. Chem. Soc. 127(23), 8286–8287 (2005)

    Article  Google Scholar 

  7. K. Kakiuchi, E. Hosono, S. Fujihara, J. Photochem. Photobiol. A Chem. 179(1), 81–86 (2006)

    Article  Google Scholar 

  8. N. H. Hong, J. Sakai, V. Brizé, J. Phys. Condens. Matter, 19(3), 36219 (2007)

    Article  Google Scholar 

  9. C. He, T. Sasaki, H. Usui, Y. Shimizu, N. Koshizaki, J. Photochem. Photobiol. A Chem. 191(1), 66–73 (2007)

    Article  Google Scholar 

  10. S. Kuriakose, V. Choudhary, B. Satpati, S. Mohapatra, Beilstein J. Nanotechnol 5(1), 639–650 (2014).

    Google Scholar 

  11. T. Bhuyan, K. Mishra, M. Khanuja, R. Prasad, A. Varma, Mater. Sci. Semicond. Process 32, 55–61 (2015)

    Article  Google Scholar 

  12. X. Zhang, J. Qin, Y. Xue, P. Yu, B. Zhang, L. Wang, R. Liu, Sci. Rep. 4, 4596 (2014)

  13. A. Sadollahkhani, I. Kazeminezhad, J. Lu, O. Nur, L. Hultman, M. Willander, RSC Adv 4, 36940–36950 (2014)

    Article  Google Scholar 

  14. X. Zhang, J. Qin, L. Hao, R., Wang, X. Shen, R. Yu, S. Limpanart, M. Ma, R. Liu, J. Phys. Chem. C 119, 20544–20554 (2015)

    Article  Google Scholar 

  15. D. Schelonka, M. Slušná, J. Tolasz, D. Popelková, P. Ecorchard, Mater. Today Proc. 3, 2679–2687 (2016)

  16. C. Jagadish, S.J. Pearton, Zinc oxide bulk, thin films and nanostructures: processing, properties, and applications, 1st ed. (Elsevier Science, Kidlington, UK, 2006)

    Google Scholar 

  17. B. Yao, L.X. Guan, G.Z. Xing, Z.Z. Zhang, B.H. Li, Z.P. Wei, X.H. Wang, C.X. Cong, Y.P. Xie, Y.M. Lu, J. Lumin. 122, 191–194 (2007)

    Article  Google Scholar 

  18. C.X. Xu, X.W. Sun, B.J. Chen, Appl. Phys. Lett. 84(9), 1540–1542 (2004)

    Article  ADS  Google Scholar 

  19. X. Jiang, F.L. Wong, M.K. Fung, S.T. Lee, Appl. Phys. Lett. 83(9), 1875–1877 (2003)

    Article  ADS  Google Scholar 

  20. M. Mahanti, D. Basak, J. Lumin. 145, 19–24 (2014)

    Article  Google Scholar 

  21. W. Choi, A. Termin, M.R. Hoffmann, J. Phys. Chem. 98(51), 13669–13679 (1994)

    Article  Google Scholar 

  22. G. Bystrzejewska-Piotrowska, J. Golimowski, P.L. Urban, Waste Manag. 29, 2587–2595 (2009)

    Article  Google Scholar 

  23. M. Auffan, J. Rose, J.-Y. Bottero, G.V. Lowry, J.-P. Jolivet, M.R. Wiesner, Nat. Nanotechnol. 4, 634–641 (2009)

    Article  ADS  Google Scholar 

  24. J. Gan, X. Lu, J. Wu, S. Xie, T. Zhai, M. Yu, Z. Zhang, Y. Mao, S.C.I. Wang, Y. Shen, Y. Tong, Sci. Rep 3, 1021 (2013)

    ADS  Google Scholar 

  25. X. Zhang, J. Qin, Y. Xue, P. Yu, B. Zhang, L. Wang, R. Liu, Sci. Rep 4, 4596 (2014)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manika Khanuja.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Pendurthi, R., Khanuja, M. et al. Copper-doped modified ZnO nanorods to tailor its light assisted charge transfer reactions exploited for photo-electrochemical and photo-catalytic application in environmental remediation. Appl. Phys. A 123, 184 (2017). https://doi.org/10.1007/s00339-017-0806-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-0806-8

Keywords

Navigation