Skip to main content
Log in

The ZnS–CuS thin layer nanocomposites green synthesis and their efficient photocatalytic applications in photodegradation the organic dye molecules

  • Original Research
  • Published:
Journal of Nanostructure in Chemistry Aims and scope Submit manuscript

Abstract

Here, the zinc sulfide–copper sulfide (ZnS–CuS) nanocomposites have been synthesized using immersing thin layers of ZnS in 0.5 (M) Copper (II) chloride solution at low temperature by a simple and cost-effective chemical bath deposition (CBD) method. The immersion time of ZnS thin films in copper (II) chloride solution was investigated based on the structural, morphological, optical and optical catalytic activity of the prepared layers. The results of X-ray diffraction (XRD) and transmission electron microscopy (TEM) confirmed the formation of CuS: ZnS nanolayers consists of nanocrystals with an approximate diameter of less than 10 nm during the immersion time of 1 min. The particles forming the layers are dense and have good adhesion to the substrate. The energy gap of the layers decreases with increasing copper, which can lead to phase formation. Their significant photocatalytic activities in the photodegradation of Rhodamine B (RhB) dye in aqueous media have been considered, because ZnS:CuS nanocomposite thin films showed light catalytic activity in the RhB degradation in presence of visible radiation, so that the percentage of dye degradation is decreased by increasing the amount of copper and the duration of exposure to visible light due to slowing down the recombination rate of electron–hole pairs. While investigating the optical catalytic activity of the layers, there was no need to homogenize and centrifuge the solution to separate the nanoparticles from it. The main aim of this study is consideration of the effects of CuS amount on the photocatalytic activity of ZnS–CuS nanocomposite under the CBD method of synthesis condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Schema 1

Similar content being viewed by others

References

  1. Kavitha, G., Arulmozhi, R., Kamath, S.M., Priya, A.K., Rao, K.S., Abirami, N.: 2D graphene supported nickel oxide nano-composite for fiber optic ethanol gas sensing, removal of azo dye, and biological activity. J. Mater. Sci.: Mater. Electron. 4, 1–4 (2022)

    Google Scholar 

  2. Fujishima, A., Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358), 37–38 (1972)

    Article  CAS  PubMed  Google Scholar 

  3. Tong, R., Liu, C., Xu, Z., Kuang, Q., Xie, Z., Zheng, L.: Efficiently enhancing visible light photocatalytic activity of faceted TiO2 nanocrystals by synergistic effects of core-shell structured Au@ CdS nanoparticles and their selective deposition. ACS Appl. Mater. Interfaces. 8, 21326–21333 (2016)

    Article  CAS  PubMed  Google Scholar 

  4. Zhang, L., Ni, C., Jiu, H., Xie, C., Yan, J., Qi, G.: One-pot synthesis of Ag-TiO2/reduced graphene oxide nanocomposite for high performance of adsorption and photocatalysis. Ceram. Int. 43, 5450–5456 (2017)

    Article  CAS  Google Scholar 

  5. Hu, J.-S., Ren, L.-L., Guo, Y.-G., Liang, H.-P., Cao, A.-M., Wan, L.-J., Bai, C.-L.: Mass production and high photocatalytic activity of ZnS nanoporous nanoparticles. Angew Chem Int Ed. 44(8), 1269–1273 (2005)

    Article  CAS  Google Scholar 

  6. Kudo, A., Miseki, Y.: Visible light water splitting using dye-sensitized oxide semiconductors. Chem. Soc. Rev 38, 253–278 (2009)

    Article  CAS  PubMed  Google Scholar 

  7. Li, S., Wang, C., Cai, M., Yang, F., Liu, Y., Chen, J., Zhang, P., Li, X., Chen, X.: Facile fabrication of TaON/Bi2MoO6 core–shell S-scheme heterojunction nanofibers for boosting visible-light catalytic levofloxacin degradation and Cr (VI) reduction. Chem. Eng. J. 428, 131158 (2022)

    Article  CAS  Google Scholar 

  8. Shen, R., He, K., Zhang, A., Li, N., Ng, Y.H., Zhang, P., Hu, J., Li, X.: In-situ construction of metallic Ni3C@ Ni core–shell cocatalysts over g-C3N4 nanosheets for shell-thickness-dependent photocatalytic H2 production. Appl. Catal. B 291, 120104 (2021)

    Article  CAS  Google Scholar 

  9. Ren, D., Zhang, W., Ding, Y., Shen, R., Jiang, Z., Lu, X., Li, X.: In situ fabrication of robust cocatalyst-free CdS/g-C3N4 2D–2D step-scheme heterojunctions for highly active H2 evolution. Solar Rrl 4, 1900423 (2020)

    Article  CAS  Google Scholar 

  10. Chen, S., Huang, D., Zeng, G., Xue, W., Lei, L., Xu, P., Deng, R., Li, J., Cheng, M.: In-situ synthesis of facet-dependent BiVO4/Ag3PO4/PANI photocatalyst with enhanced visible-light-induced photocatalytic degradation performance: synergism of interfacial coupling and hole-transfer. Chem. Eng. J. 382, 122840 (2020)

    Article  CAS  Google Scholar 

  11. Shen, R., Ren, D., Ding, Y., Guan, Y., Ng, Y.H., Zhang, P., Li, X.: Nanostructured CdS for efficient photocatalytic H2 evolution: a review. Sci. China Mater. 63(11), 2153–2188 (2020)

    Article  CAS  Google Scholar 

  12. Zheng, L., Teng, F., Ye, X., Zheng, H., Fang, X.: Photo/electrochemical applications of metal sulfide/TiO2 heterostructures. Adv. Energy Mater. 10, 1902355 (2020)

    Article  CAS  Google Scholar 

  13. Chen, H.H., Park, Y.K., Kwon, E., Tsang, Y.F., Thanh, B.X., Khiem, T.C., You, S., Hu, C., Lin, K.Y.: Nanoneedle-Assembled Copper/Cobalt sulfides on nickel foam as an enhanced 3D hierarchical catalyst to activate monopersulfate for Rhodamine b degradation. J. Colloid Interface Sci. 613, 168–181 (2022)

    Article  CAS  PubMed  Google Scholar 

  14. Arjunan, S., Kavitha, H.P., Ponnusamy, S., Mani, N., Hayakawa, Y.: ZnS/CuS nanocomposites: an effective strategy to transform UV active ZnS to UV and Vis light active ZnS. J. Mater. Sci.: Mater. Electron. 27, 9022–9033 (2016)

    CAS  Google Scholar 

  15. Hong, Y., Zhang, J., Huang, F., Zhang, J., Wang, X., Wu, Z., Lin, Z., Yu, J.: Enhanced visible light photocatalytic hydrogen production activity of CuS/ZnS nanoflower spheres. Journal of Materials Chemistry A 3, 13913–13919 (2015)

    Article  CAS  Google Scholar 

  16. Sakthivel, S., Geissen, S.-U., Bahnemann, D., Murugesan, V., Vogelpohl, A.: Enhancement of photocatalytic activity by semiconductor heterojunctions: α-Fe2O3, WO3 and CdS deposited on ZnO. J. Photochem. Photobiol., A 148, 283–293 (2002)

    Article  CAS  Google Scholar 

  17. Zhu, Y., Wang, Y., Ling, Q., Zhu, Y.: Enhancement of full-spectrum photocatalytic activity over BiPO4/Bi2WO6 composites. Appl. Catal. B 200, 222–229 (2017)

    Article  CAS  Google Scholar 

  18. Xu, X., Li, S., Chen, J., Cai, S., Long, Z., Fang, X.: Design principles and material engineering of ZnS for optoelectronic devices and catalysis. Adv. Func. Mater. 28, 1802029 (2018)

    Article  Google Scholar 

  19. Chen, F., Cao, Y., Jia, D.: Facile synthesis of ZnS nanoparticles and their excellent photocatalytic performance. Ceram. Int. 41, 6645–6652 (2015)

    Article  CAS  Google Scholar 

  20. Wang, X., Li, Y., Wang, M., Li, W., Chen, M., Zhao, Y.: Synthesis of tunable ZnS–CuS microspheres and visible-light photoactivity for rhodamine B. New J. Chem. 38, 4182–4189 (2014)

    Article  CAS  Google Scholar 

  21. Yang, L., Guan, X., Wang, G.-S., Guan, X.-H., Jia, B.: Synthesis of ZnS/CuS nanospheres loaded on reduced graphene oxide as high-performance photocatalysts under simulated sunlight irradiation. New J. Chem. 41, 5732–5744 (2017)

    Article  CAS  Google Scholar 

  22. Shifu, C., Mingsong, J., Yunguang, Y.: Synthesis and characterization of Ce2S3–ZnS–CuS nanoparticles and their photocatalytic activity. J. Nanosci. Nanotechnol. 12, 4898–4904 (2012)

    Article  CAS  PubMed  Google Scholar 

  23. Magdalane, C.M., Kaviyarasu, K., Vijaya, J.J., Siddhardha, B., Jeyaraj, B., Kennedy, J., Maaza, M.: Evaluation on the heterostructured CeO2/Y2O3 binary metal oxide nanocomposites for UV/Vis light induced photocatalytic degradation of Rhodamine-B dye for textile engineering application. J. Alloy. Compd. 727, 1324–1337 (2017)

    Article  CAS  Google Scholar 

  24. Zhang, Y., Zhou, J., Cai, W., Zhou, J., Li, Z.: Enhanced photocatalytic performance and degradation pathway of Rhodamine B over hierarchical double-shelled zinc nickel oxide hollow sphere heterojunction. Appl. Surf. Sci. 430, 549–560 (2018)

    Article  CAS  Google Scholar 

  25. Mahanthappa, M., Kottam, N., Yellappa, S.: Enhanced photocatalytic degradation of methylene blue dye using CuSCdS nanocomposite under visible light irradiation. Appl. Surf. Sci. 475, 828–838 (2019)

    Article  CAS  Google Scholar 

  26. Zhu, L., Li, H., Liu, Z., Xia, P., Xie, Y., Xiong, D.: Synthesis of the 0D/3D CuO/ZnO heterojunction with enhanced photocatalytic activity. J. Phys. Chem. C 122, 9531–9539 (2018)

    Article  CAS  Google Scholar 

  27. Yu, W., Zhang, J., Peng, T.: New insight into the enhanced photocatalytic activity of N-, C-and S-doped ZnO photocatalysts. Appl. Catal. B 181, 220–227 (2016)

    Article  CAS  Google Scholar 

  28. Ahmad, M., Rehman, W., Khan, M.M., Qureshi, M.T., Gul, A., Haq, S., Ullah, R., Rab, A., Menaa, F.: Phytogenic fabrication of ZnO and gold decorated ZnO nanoparticles for photocatalytic degradation of Rhodamine B. J. Environ. Chem. Eng. 9, 104725 (2021)

    Article  CAS  Google Scholar 

  29. Chen, L., Chen, Y.B., Wu, L.M.: Synthesis of uniform Cu2S nanowires from Copper−thiolate polymer precursors by a solventless thermolytic method. J. Am. Chem. Soc. 126(50), 16334–16335 (2004)

    Article  CAS  PubMed  Google Scholar 

  30. Wu, Y., Wadia, C., Ma, W., Sadtler, B., Alivisatos, A.P.: Synthesis and photovoltaic application of copper (I) sulfide nanocrystals. Nano Lett. 8(8), 2551–2555 (2008)

    Article  CAS  PubMed  Google Scholar 

  31. Zhang, H., Zhang, Y., Yu, J., Yang, D.: Phase-selective synthesis and self-assembly of monodisperse copper sulfide nanocrystals. The Journal of Physical Chemistry C. 112(35), 13390–13394 (2008)

    Article  CAS  Google Scholar 

  32. Lim, W.P., Wong, C.T., Ang, S.L., Low, H.Y., Chin, W.S.: Phase-selective synthesis of copper sulfide nanocrystals. Chem. Mater. 18(26), 6170–6177 (2006)

    Article  CAS  Google Scholar 

  33. Wang, Y., Hu, Y., Zhang, Q., Ge, J., Lu, Z., Hou, Y., Yin, Y.: One-pot synthesis and optical property of copper (I) sulfide nanodisks. Inorg. Chem. 49(14), 6601–6608 (2010)

    Article  CAS  PubMed  Google Scholar 

  34. Kruszynska, M., Borchert, H., Bachmatiuk, A., Rümmeli, M.H., Parisi, B.B., J. r., Kolny-Olesiak, J.: Size and Shape Control of Colloidal Copper(I) Sulfide Nanorods. ACS Nano 6, 5889–5896 (2012)

    Article  CAS  PubMed  Google Scholar 

  35. Chen, S., Tang, W., Hu, Y., Fu, X.: The preparation and characterization of composite bismuth tungsten oxide with enhanced visible light photocatalytic activity. CrystEngComm 15, 7943–7950 (2013)

    Article  CAS  Google Scholar 

  36. Joya, K.S., Joya, Y.F., Ocakoglu, K., van de Krol, R.: Water-splitting catalysis and solar fuel devices: artificial leaves on the move. Angew. Chem. Int. Ed. 52, 10426–10437 (2013)

    Article  CAS  Google Scholar 

  37. Lu, C., Liu, C., Chen, R., Fang, X., Xu, K., Meng, D.: Synthesis and characterization of ZnO/ZnS/CuS ternary nanocomposites as high efficient photocatalyst in visible light. J. Mater. Sci. Mater. Electron. 27, 6947–6954 (2016)

    Article  CAS  Google Scholar 

  38. Babu, B., Mallikarjuna, K., Reddy, C.V., Park, J.: Facile synthesis of Cu@ TiO2 core shell nanowires for efficient photocatalysis. Mater. Lett. 176, 265–269 (2016)

    Article  CAS  Google Scholar 

  39. Lee, M., Yong, K.: Highly efficient visible light photocatalysis of novel CuS/ZnO heterostructure nanowire arrays. Nanotechnology 23, 194014 (2012)

    Article  PubMed  Google Scholar 

  40. Yang, L., Luo, S., Li, Y., Xiao, Y., Kang, Q., Cai, Q.: High efficient photocatalytic degradation of p-nitrophenol on a unique Cu2O/TiO2 pn heterojunction network catalyst. Environ. Sci. Technol. 44, 7641–7646 (2010)

    Article  CAS  PubMed  Google Scholar 

  41. Zhang, Z., Shao, C., Li, X., Wang, C., Zhang, M., Liu, Y.: Electrospun nanofibers of p-type NiO/n-type ZnO heterojunctions with enhanced photocatalytic activity. ACS Appl. Mater. Interfaces. 2, 2915–2923 (2010)

    Article  CAS  PubMed  Google Scholar 

  42. Khanchandani, S., Kumar, S., Ganguli, A.K.: Comparative study of TiO2/CuS core/shell and composite nanostructures for efficient visible light photocatalysis. ACS Sustainable Chemistry & Engineering 4, 1487–1499 (2016)

    Article  CAS  Google Scholar 

  43. Thangavel, S., Krishnamoorthy, K., Kim, S.-J., Venugopal, G.: Designing ZnS decorated reduced graphene-oxide nanohybrid via microwave route and their application in photocatalysis. J. Alloy. Compd. 683, 456–462 (2016)

    Article  CAS  Google Scholar 

  44. Mehr, E.S., Sorbiun, M., Ramazani, A., Fardood, S.T.: Plant-mediated synthesis of zinc oxide and copper oxide nanoparticles by using ferulago angulata (schlecht) boiss extract and comparison of their photocatalytic degradation of Rhodamine B (RhB) under visible light irradiation. J. Mater. Sci.: Mater. Electron. 29, 1333–1340 (2018)

    Google Scholar 

  45. Wang, Q., Yun, G., Bai, Y., An, N., Chen, Y., Wang, R., Lei, Z., Shangguan, W.: CuS, NiS as co-catalyst for enhanced photocatalytic hydrogen evolution over TiO2. Int. J. Hydrogen Energy 39, 13421–13428 (2014)

    Article  CAS  Google Scholar 

  46. Chen, X., Zhang, F., Wang, Q., Han, X., Li, X., Liu, J., Lin, H., Qu, F.: The synthesis of ZnO/SnO 2 porous nanofibers for dye adsorption and degradation. Dalton Trans. 44, 3034–3042 (2015)

    Article  CAS  PubMed  Google Scholar 

  47. Naseri, A., Samadi, M., Mahmoodi, N.M., Pourjavadi, A., Mehdipour, H., Moshfegh, A.Z.: Tuning composition of electrospun ZnO/CuO nanofibers: toward controllable and efficient solar photocatalytic degradation of organic pollutants. The Journal of Physical Chemistry C 121, 3327–3338 (2017)

    Article  CAS  Google Scholar 

  48. Xu, X., Bullock, J., Schelhas, L.T., Stutz, E.Z., Fonseca, J.J., Hettick, M., Pool, V.L., Tai, K.F., Toney, M.F., Fang, X., Javey, A.: Chemical bath deposition of p-type transparent, highly conducting (CuS) x:(ZnS) 1–x nanocomposite thin films and fabrication of Si heterojunction solar cells. Nano Lett. 16(3), 1925–1932 (2016)

    Article  CAS  PubMed  Google Scholar 

  49. Yildirim, M.A., Ateş, A., Astam, A.: Annealing and light effect on structural, optical and electrical properties of CuS, CuZnS and ZnS thin films grown by the SILAR method. Physica E 41(8), 1365–1372 (2009)

    Article  Google Scholar 

  50. Apolinar-Iribe, A., Acosta-Enriquez, M.C., Berman-Mendoza, D., Mendivil-Reynoso, T., Larios-Rodriguez, E., Ramirez-Bon, R., Castillo, S.J.: Effects of the annealing on CuS thin films using triethanolamine as complexing agent by CBD. Chalcogenide Lett. 10, 543 (2013)

    Google Scholar 

  51. Balachandran, S., Swaminathan, M.: Facile fabrication of heterostructured Bi2O3–ZnO photocatalyst and its enhanced photocatalytic activity. The Journal of Physical Chemistry C. 116(50), 26306–26312 (2012)

    Article  CAS  Google Scholar 

  52. Soltaninejad, V., Ahghari, M.R., Taheri-Ledari, R., Maleki, A.: Bifunctional PVA/ZnO/AgI/chlorophyll nanocomposite film: enhanced photocatalytic activity for degradation of pollutants and antimicrobial property under visible-light irradiation. Langmuir 37(15), 4700–4713 (2021)

    Article  CAS  PubMed  Google Scholar 

  53. Kondamareddy, K.K., Bin, H., Lu, D., Kumar, P., Dwivedi, R.K., Pelenovich, V.O., Zhao, X.Z., Gao, W., Fu, D.: Enhanced visible light photodegradation activity of RhB/MB from aqueous solution using nanosized novel Fe-Cd co-modified ZnO. Sci. Rep. 8(1), 1–2 (2018)

    Google Scholar 

  54. Ganesan, K., Jothi, V.K., Natarajan, A., Rajaram, A., Ravichandran, S., Ramalingam, S.: Green synthesis of Copper oxide nanoparticles decorated with graphene oxide for anticancer activity and catalytic applications. Arab. J. Chem. 13(8), 6802–6814 (2020)

    Article  CAS  Google Scholar 

  55. Nwaji, N., Akinoglu, E.M.: Synthesis of ZnS-CuS-Bi nanonail heterostructures and funnel mechanism of their photocatalytic activity. J. Environ. Chem. Eng. 9(5), 106066 (2021)

    Article  CAS  Google Scholar 

  56. de Almeida, M.F., Bellato, C.R., Miranda, L.D., Milagres, J.L.: Preparation of calcined hydrotalcite/TiO2-Ag composite and enhanced photocatalytic properties. Ceram. Int. 43, 1843–1852 (2017)

    Article  Google Scholar 

  57. Kim, H.G., Borse, P.H., Jang, J.S., Jeong, E.D., Jung, O.-S., Suh, Y.J., Lee, J.S.: Fabrication of CaFe 2 O 4/MgFe 2 O 4 bulk heterojunction for enhanced visible light photocatalysis. Chem. Commun. 39, 5889–5891 (2009)

    Article  Google Scholar 

  58. Zhang, J., Yu, J., Zhang, Y., Li, Q., Gong, J.R.: Visible light photocatalytic H2-production activity of CuS/ZnS porous nanosheets based on photoinduced interfacial charge transfer. Nano Lett. 11, 4774–4779 (2011)

    Article  CAS  PubMed  Google Scholar 

  59. Aarthi, T., Madras, G.: Photocatalytic degradation of rhodamine dyes with nano-TiO2. Ind. Eng. Chem. Res. 46, 7–14 (2007)

    Article  CAS  Google Scholar 

  60. Zheng, Y., Zheng, L., Zhan, Y., Lin, X., Zheng, Q., Wei, K.: Ag/ZnO heterostructure nanocrystals: synthesis, characterization, and photocatalysis. Inorg. Chem. 46, 6980–6986 (2007)

    Article  CAS  PubMed  Google Scholar 

  61. Boughelout, A., Macaluso, R., Kechouane, M., Trari, M.: Photocatalysis of rhodamine B and methyl orange degradation under solar light on ZnO and Cu2O thin films. React. Kinet. Mech. Catal. 129, 1115–1130 (2020)

    Article  CAS  Google Scholar 

  62. Mane, R., Lokhande, C.: Chemical deposition method for metal chalcogenide thin films. Mater. Chem. Phys. 65, 1–31 (2000)

    Article  CAS  Google Scholar 

  63. Xu, X., Bullock, J., Schelhas, L.T., Stutz, E.Z., Fonseca, J.J., Hettick, M., Pool, V.L., Tai, K.F., Toney, M.F., Fang, X.: Chemical bath deposition of p-type transparent, highly conducting (CuS) x:(ZnS) 1–x nanocomposite thin films and fabrication of Si heterojunction solar cells. Nano Lett. 16, 1925–1932 (2016)

    Article  CAS  PubMed  Google Scholar 

  64. Jrad, A., Naffouti, W., Nefzi, C., Nasr, T.B., Ammar, S., Turki-Kamoun, N.: Effect of copper concentration on the physical properties of ZnS: Cu alloys prepared by chemical bath deposition. J. Mater. Sci.: Mater. Electron. 27, 10684–10695 (2016)

    CAS  Google Scholar 

  65. Muthukumaran, S.: Structural XPS and photoluminescence properties of ZnS: Cu thin films by chemical bath deposition method. Mater. Lett. 93, 223–225 (2013)

    Article  CAS  Google Scholar 

  66. Ortíz-Ramos, D.E., González, L.A., Ramirez-Bon, R.: p-Type transparent Cu doped ZnS thin films by the chemical bath deposition method. Mater. Lett. 124, 267–270 (2014)

    Article  Google Scholar 

  67. Harish, S., Sabarinathan, M., Kristy, A.P., Archana, J., Navaneethan, M., Ikeda, H., Hayakawa, Y.: ZnS quantum dots impregnated-mesoporous TiO 2 nanospheres for enhanced visible light induced photocatalytic application. RSC Adv. 7, 26446–26457 (2017)

    Article  CAS  Google Scholar 

  68. Thuy, U.T.D., Borisova, I., Stoilova, O., Rashkov, I., Liem, N.Q.: Electrospun CuS/ZnS–PAN hybrids as efficient visible-light photocatalysts. Catal. Lett. 148, 2756–2764 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to warmly acknowledge from Iran University of Science and Technology (IUST) for the financial and instrumental supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beheshteh Sohrabi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sohrabi, B., Karimi, A. & Chenab, K.K. The ZnS–CuS thin layer nanocomposites green synthesis and their efficient photocatalytic applications in photodegradation the organic dye molecules. J Nanostruct Chem 13, 533–543 (2023). https://doi.org/10.1007/s40097-022-00508-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40097-022-00508-y

Keywords

Navigation