Skip to main content
Log in

Specialized mechanical properties of pure aluminum by using non-equal channel angular pressing for developing its electrical applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Despite valuable electrical characteristics, the use of pure aluminum in different applications has been limited due to its low strength. Non-equal channel angular pressing (NECAP) is a recently proposed severe plastic deformation process with greater induced plastic strain and, consequently, better grain refinement in the product, compared with the well-known equal channel angular pressing technique. This research is concerned with the effects of the process temperature and ram velocity on the mechanical, workability and electrical properties of AA1060 aluminum alloy. Increasing the process temperature can concurrently increase the workability, ductility and electrical conductivity, while it has a reverse influence on the strength of the NECAPed specimen, although the strengths of all the products are higher than the as-received alloy. The influence of the ram speed on the mechanical properties of the processed samples is lower than the process temperature. Finally, a compromised process condition is introduced in order to attain a good combination of workability and strength with well-preserved electrical conductivity for electrical applications of components made of pure aluminum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G.E. Dieter, H.A. Kuhn, S. Lee Semiatin, Handbook of Workability and Process Design (ASM internationals, Ohio, 2003)

  2. M. Abdel-Rahman, J. Mater. Process. Technol. 51, 50 (1995)

    Article  Google Scholar 

  3. A.S. Wifi, A. Abdel-Hamid, N. El-Abbasi, J. Mater. Process. Technol. 77, 285 (1998)

    Article  Google Scholar 

  4. T. Kvackaj, R. Kocisko, J. Tiza, J. Bidulska, A. Kovacova, R. Bidulsky, J. Bacso, M. Vlado, Arch. Metal. Mater. 58 (2013). doi:10.2478/amm-2013-0008

  5. Ch. Hari-Krishna, M.J. Davidson, Ch. Nagarajo, Proc. Mater. Sci. 5, 1392 (2014)

    Article  Google Scholar 

  6. A.M. Freudenthal, The Inelastic Behavior of Engineering Materials and Structures (Wiley, New York, 1950)

    Google Scholar 

  7. H.K. Oh, J. Mater. Process. Technol. 53, 582 (1995)

    Article  Google Scholar 

  8. M.G. Cockcroft, D.J. Latham, J. Inst. Met. 96, 33 (1968)

    Google Scholar 

  9. J. Surrette, Advancing Metrology for Electrotechnology to Support the U.S. Economy (DIANE Publishing, Collingdale, 1997)

  10. F. Vollertsen, Micro Metal Forming (Springer, Berlin, 2013)

    Book  Google Scholar 

  11. L. Pryor, R. Schlobohm, B. Brownell, A comparison of aluminium vs. copper as used in electrical equipment. 1–7, GE Consumer and Industrial (2008)

  12. S. Karabay, M. Yilmaz, M. Zeren, J. Mater. Process. Technol. 160, 138 (2005)

    Article  Google Scholar 

  13. National Materials Advisory Board, Mutual Substitutability of Aluminum and Copper (National Research Council, Washington, 1972)

  14. Handbook Committee, ASM Metals Handbook, Vol. 2: Properties and selections: Nonferrous Alloys and Special Purpose Materials (ASM International, Ohio, 2000)

  15. A. Sivaraman, U. Chakkingal, J. Mater. Process. Technol. 202, 543 (2008)

    Article  Google Scholar 

  16. S. Surendarnath, K. Sankaranarayanasamy, B. Ravisankar, Mater. Manuf. Process. 29, 691 (2014)

    Article  Google Scholar 

  17. X. Jie, L. Jianwei, Z. Xiaocheng, F. Guohua, S.H. Debin, G. Bin, Mater. 8, 7447 (2015). doi:10.3390/ma8115391

    Article  Google Scholar 

  18. X. Cheng, X. Kenong, T.G. Langdon, Mater. Sci. Eng. A 527, 205 (2009)

    Article  Google Scholar 

  19. G. Faraji, M.M. Mashhadi, K. Abrinia, H.S. Kim, Appl. Phys. A 107(4), 819 (2012)

    Article  ADS  Google Scholar 

  20. M.H. Paydar, M. Reihanian, E. Bagherpour, M. Sharifzadeh, M. Zarinejad, T.A. Dean, Mater. Des. 30, 429 (2009)

    Article  Google Scholar 

  21. L.S. Toth, R. Lapovok, A. Hasani, Ch. Gu, Scr. Mater. 61, 1121 (2009)

    Article  Google Scholar 

  22. C.F. Gu, L.S. Toth, Scr. Mater. 67, 33 (2012)

    Article  Google Scholar 

  23. A. Hasani, L.S. Toth, B. Beausir, J. Eng. Mater. Technol. (2010). doi:10.1115/1.4001261

    Google Scholar 

  24. P.W.J. McKenzie, R. Lapovok, Y. Estrin, Acta Mater. 55, 2985 (2007)

    Article  Google Scholar 

  25. F. Fereshteh-Saniee, M. Asgari, M. Barati, S.M. Pezeshki, T. Nonferr, Metal. Soc. 24, 3274 (2014)

    Google Scholar 

  26. H. Kuhn, D. Medlin, ASM Metals Handbook, Vol. 8: Mechanical Testing (ASM International, Ohio, 2000)

  27. https://www.bluesea.com/resources/108/Electrical_Conductivity_of_Materials

  28. https://www.ndeed.org/EducationResources/CommunityCollege/Materials/Physical_Chemical/Electrical.htm

  29. Y. Singh, Int. J. Mod. Phys. Conf. Ser. 22, 745 (2013)

    Article  ADS  Google Scholar 

  30. E.A. Reeves, M. Heathcote, Newnes Electrical Pocket Book, 23 edn. (Routledge, New York, 2003), p. 2

  31. M.G. Cockcroft, D.J. Latham, J. Inst. Met. 96, 33 (1968)

    Google Scholar 

  32. G.Z. Quan, F.B. Wang, Y.Y. Liu, Y. Shi, J. Zhou, T. Nonferr, Metal. Soc. 23, 749 (2013)

    Google Scholar 

  33. Y.F. Xia, G.Z. Quan, J. Zhou, T. Nonferr, Metal. Soc. 20, 580 (2010)

    Google Scholar 

  34. J. Fluhrer, DEFORM 2D Version 8.1 User’s Manual, Scientific Forming Technologies Corporation. Columbus Ohio (2010)

  35. R.Z. Valiev, T.G. Langdon, Prog. Mater Sci. 51, 881 (2006)

    Article  Google Scholar 

  36. I.Y. Kim, J.Y. Kim, D.H. Shin, J.T. Park, Metal. Mater. Trans. A 34, 1555 (2003)

    Article  Google Scholar 

  37. S. Sepahi-Boroujeni, F. Fereshteh-Saniee, J. Mater. Sci. 50, 3908 (2015)

    Article  ADS  Google Scholar 

  38. D.H. Kang, D.W. Kim, S. Kim, G.T. Bae, K.H. Kimand, J. Kim Nack, Scr. Mater. 61, 768 (2009)

    Article  Google Scholar 

  39. D. Guo, Z. Zhang, G. Zhang, M. Li, Y. Shi, T. Ma, X. Zhang, Mater. Sci. Eng. A 591, 167 (2014)

    Article  Google Scholar 

  40. J.L. Ning, E. Courtais-Manara, L. Kurmanaeva, A.V. Ganeev, R.Z. Valie, C. Kubel, Y. Ivanisenko, Mater. Sci. Eng. A 581, 8 (2013)

    Article  Google Scholar 

  41. S.Y. Chang, B.D. Ahn, S.K. Hong, S. Kamado, Y. Kojima, D.H. Shin, J. Alloys Compd. 386, 197 (2005)

    Article  Google Scholar 

  42. F. Fereshteh-Saniee, F. Fatehi-Sichani, J. Mater. Process. Technol. 177, 478 (2006)

    Article  Google Scholar 

  43. S.V. Dobatkin, J. Gubicza, D.V. Shangina, N.R. Bochvar, N.Y. Tabachkova, Mater. Lett. 153, 5 (2015)

    Article  Google Scholar 

  44. K.X. Wei, W. Wei, F. Wang, Q.B. Du, I.V. Alexandrov, J. Hu, Mater. Sci. Eng. A 528, 1478 (2011)

    Article  Google Scholar 

  45. R.Z. Valiev, M.Y. Murashkin, I. Sabirov, Scr. Mater. 76, 13 (2014)

    Article  Google Scholar 

  46. M.Y. Murashkin, I. Sabirov, X. Sauvage, R.Z. Valiev, J. Mater. Sci. 51, 33 (2016)

    Article  ADS  Google Scholar 

  47. Y. Miyajima, S.Y. Komatsu, M. Mitsuhara, S. Hata, H. Nakashima, N. Tsuji, Philos. Mag. 90, 4475 (2010)

    Article  ADS  Google Scholar 

  48. S.O. Adeosun, O.I. Sekunowo, S.A. Balogun, L.O. Osoba, J. Miner. Mater. Charact. Eng. 10, 553 (2011)

    Google Scholar 

  49. M.Y. Murashkin, I. Sabirov, A.E. Medvedev, N.A. Enikeev, W. Lefebvre, R.Z. Valiev, X. Sauvage, Mater. Des. 90, 433 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faramarz Fereshteh-Saniee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fereshteh-Saniee, F., Asgari, M. & Fakhar, N. Specialized mechanical properties of pure aluminum by using non-equal channel angular pressing for developing its electrical applications. Appl. Phys. A 122, 779 (2016). https://doi.org/10.1007/s00339-016-0305-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0305-3

Keywords

Navigation