Skip to main content
Log in

Nanoimprint lithography: an enabling technology for nanophotonics

  • Invited Paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nanoimprint lithography (NIL) is an indispensable tool to realize a fast and accurate nanoscale patterning in nanophotonics due to high resolution and high yield. The number of publication on NIL has increased from less than a hundred per year to over three thousand per year. In this paper, the most recent developments on NIL patterning transfer processes and its applications on nanophotonics are discussed and reviewed. NIL has been opening up new opportunities for nanophotonics, especially in fabricating optical meta-materials. With more researches on this low-cost high-throughput fabrication technology, we should anticipate a brighter future for nanophotonics and NIL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. F. Flory, L. Escoubas, G. Berginc, Optical properties of nanostructured materials: a review. J. Nanophotonics 5(1), 052502–0525020 (2011)

    Article  ADS  Google Scholar 

  2. S.Y. Chou, P.R. Krauss, P.J. Renstrom, Imprint of sub-25 nm vias and trenches in polymers. Appl. Phys. Lett. 67(21), 3114–3116 (1995)

    Article  ADS  Google Scholar 

  3. S.Y. Chou, P.R. Krauss, P.J. Renstrom, Nanoimprint lithography. J. Vac. Sci. Technol. B 14(6), 4129–4133 (1996)

    Article  Google Scholar 

  4. Hoefflinger, B., ITRS: The International Technology Roadmap for Semiconductors, in Chips 2020, ed by B. Hoefflinger, (Springer, Berlin, Heidelberg, 2012). pp. 161–174

  5. M.D. Levenson, N. Viswanathan, R.A. Simpson, Improving resolution in photolithography with a phase-shifting mask. IEEE Electron Devices Trans. 29(12), 1828–1836 (1982)

    Article  ADS  Google Scholar 

  6. C. Vieu et al., Electron beam lithography: resolution limits and applications. Appl. Surf. Sci. 164(1), 111–117 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  7. I. Divliansky et al., Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography. Appl. Phys. Lett. 82(11), 1667–1669 (2003)

    Article  ADS  Google Scholar 

  8. H.X. Ge et al., Cross-linked polymer replica of a nanoimprint mold at 30 nm half-pitch. Nano Lett. 5(1), 179–182 (2005)

    Article  ADS  Google Scholar 

  9. Y.-P. Chen et al., Fabrication of concave gratings by curved surface UV-nanoimprint lithography. J. Vac. Sci. Technol. B 26(5), 1690–1695 (2008)

    Article  Google Scholar 

  10. Z. Li et al., Hybrid nanoimprint—soft lithography with sub-15 nm resolution. Nano Lett. 9(6), 2306–2310 (2009)

    Article  ADS  Google Scholar 

  11. M. Colburn et al., Proc. SPIE 3676, 379–389 (1999)

    Article  ADS  Google Scholar 

  12. J. Haisma et al., Mold-assisted nanolithography: a process for reliable pattern replication. J. Vac. Sci. Technol. B 14(6), 4124–4128 (1996)

    Article  Google Scholar 

  13. Z. Yu et al., Fabrication of nanoscale gratings with reduced line edge roughness using nanoimprint lithography. J. Vac. Sci. Technol. B 21(5), 2089–2092 (2003)

    Article  Google Scholar 

  14. Chou, S., Z. Yu, W. Wu, Articles comprising nanoscale patterns with reduced edge roughness and methods of making same, 2003, US Patent App. 10/732,038

  15. Yao, Y., et al., Line width tuning and smoothening for periodical grating fabrication in nanoimprint lithography. Appl. Phys. A, 1–5 (2015). doi:10.1007/s00339-015-9278-x

  16. R.A. Wind, M.A. Hines, Macroscopic etch anisotropies and microscopic reaction mechanisms: a micromachined structure for the rapid assay of etchant anisotropy. Surf. Sci. 460(1), 21–38 (2000)

    Article  ADS  Google Scholar 

  17. F. Meng et al., Replication of large area nanoimprint stamp with small critical dimension loss. Sci. China Technol. Sci. 55(3), 600–605 (2012)

    Article  Google Scholar 

  18. S.M. Spillane et al., Fabrication of nanophotonic structures for information processing. In: Proceedings of the SPIE 6883, Advanced Fabrication Technologies for Micro/Nano Optics and Photonics, 688302 (2008)

  19. H. Tan, A. Gilbertson, S.Y. Chou, Roller nanoimprint lithography. J. Vac. Sci. Technol. B 16(6), 3926–3928 (1998)

    Article  Google Scholar 

  20. S.H. Ahn, L.J. Guo, Large-area roll-to-roll and roll-to-plate nanoimprint lithography: a step toward high-throughput application of continuous nanoimprinting. ACS Nano 3(8), 2304–2310 (2009)

    Article  Google Scholar 

  21. N.I. Zheludev, The road ahead for metamaterials. Science 328(5978), 582–583 (2010)

    Article  ADS  Google Scholar 

  22. V.G. Veselago, The electrodynamics of substances with simultaneously negative values of ɛ and μ. Sov. Phys. Usp. 10(4), 509–514 (1968)

    Article  ADS  Google Scholar 

  23. D.R. Smith et al., Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84(18), 4184–4187 (2000)

    Article  ADS  Google Scholar 

  24. R.A. Shelby, D.R. Smith, S. Schultz, Experimental verification of a negative index of refraction. Science 292(5514), 77–79 (2001)

    Article  ADS  Google Scholar 

  25. V.M. Shalaev et al., Negative index of refraction in optical metamaterials. Opt. Lett. 30(24), 3356–3358 (2005)

    Article  ADS  Google Scholar 

  26. S. Zhang et al., Near-infrared double negative metamaterials. Opt. Express 13(13), 4922–4930 (2005)

    Article  ADS  Google Scholar 

  27. S. Zhang et al., Experimental demonstration of near-infrared negative-index metamaterials. Phys. Rev. Lett. 95(13), 137404 (2005)

  28. G. Dolling et al., Simultaneous negative phase and group velocity of light in a metamaterial. Science 312(5775), 892–894 (2006)

    Article  ADS  Google Scholar 

  29. W. Wu et al., Midinfrared metamaterials fabricated by nanoimprint lithography. Appl. Phys. Lett. 90(6), 063107 (2007)

    Article  ADS  Google Scholar 

  30. W. Wu et al., Optical metamaterials at near and mid-IR range fabricated by nanoimprint lithography. Appl. Phys. Mater. Sci. Process. 87(2), 143–150 (2007)

    Article  ADS  Google Scholar 

  31. W. Wu et al., Geometrical dependence of optical negative index meta-materials at 1.55 μm. Appl. Phys. A 95(4), 1119–1122 (2009)

    Article  ADS  Google Scholar 

  32. E. Kim et al., Modulation of negative index metamaterials in the near-IR range. Appl. Phys. Lett. 91(17), 173105 (2007)

    Article  ADS  Google Scholar 

  33. D.J. Cho et al., Ultrafast modulation of optical metamaterials. Opt. Express 17(20), 17652–17657 (2009)

    Article  ADS  Google Scholar 

  34. E. Kim et al., Nonlinear optical spectroscopy of photonic metamaterials. Phys. Rev. B (Condens. Matter Mater. Phys.) 78(11), 113102 (2008)

    Article  ADS  Google Scholar 

  35. Y. Yao, H. Liu, W. Wu, Spectrum splitting using multi-layer dielectric meta-surfaces for efficient solar energy harvesting. Appl. Phys. A 115(3), 713–719 (2014)

    Article  ADS  Google Scholar 

  36. Y. Yao, H. Liu, W. Wu, Fabrication of high-contrast gratings for a parallel spectrum splitting dispersive element in a concentrated photovoltaic system. J. Vac. Sci. Technol. B 32(6), 6 (2014)

    Article  Google Scholar 

  37. W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32(3), 510–519 (1961)

    Article  ADS  Google Scholar 

  38. V. Karagodsky, F.G. Sedgwick, C.J. Chang-Hasnain, Theoretical analysis of subwavelength high contrast grating reflectors. Opt. Express 18(16), 16973–16988 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Y., Liu, H., Wang, Y. et al. Nanoimprint lithography: an enabling technology for nanophotonics. Appl. Phys. A 121, 327–333 (2015). https://doi.org/10.1007/s00339-015-9438-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9438-z

Keywords

Navigation