Skip to main content
Log in

Optical metamaterials at near and mid-IR range fabricated by nanoimprint lithography

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Two types of optical metamaterials operating at near-IR and mid-IR frequencies, respectively, have been designed, fabricated by nanoimprint lithography (NIL), and characterized by laser spectroscopic ellipsometry. The structure for the near-IR range was a metal/dielectric/metal stack “fishnet” structure that demonstrated negative permittivity and permeability in the same frequency region and hence exhibited a negative refractive index at a wavelength near 1.7 μm. In the mid-IR range, the metamaterial was an ordered array of fourfold symmetric L-shaped resonators (LSRs) that showed both a dipole plasmon resonance resulting in negative permittivity and a magnetic resonance with negative permeability near wavelengths of 3.7 μm and 5.25 μm, respectively. The optical properties of both metamaterials are in agreement with theoretical predictions. This work demonstrates the feasibility of designing various optical negative-index metamaterials and fabricating them using the nanoimprint lithography as a low-cost, high-throughput fabrication approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.I. Mandelshtam, in: Lectures in Optics, Relativity, and Quantum Mechanics (Moscow, Nauka, 1972), p. 389

  2. V.E. Pafomov, Zh. Eksp. Teor. Fiz. 36, 1853 (1959)

    Google Scholar 

  3. V.G. Veselago, Usp. Fiz. Nauk. 92, 517 (1967)

    Google Scholar 

  4. J.B. Pendry, A.J. Holden, W.J. Stewart, I. Youngs, Phys. Rev. Lett. 76, 4773 (1996)

    Article  ADS  Google Scholar 

  5. J.B. Pendry, A.J. Holten, D.J. Robbins, W.J. Stewart, IEEE Trans. Microw. Theory Technol. 47, 2075 (1999)

    Article  Google Scholar 

  6. J.B. Pendry, Phys. Rev. Lett. 85, 3966 (2000)

    Article  ADS  Google Scholar 

  7. A.M. Bratkovsky, A. Cano, A.P. Levanyuk, Appl. Phys. Lett. 87, 103507 (2005)

    Article  Google Scholar 

  8. J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, IEEE Trans. Microw. Theory Technol. 47, 2075 (1999)

    Article  Google Scholar 

  9. T.J. Yen, W.J. Padilla, N. Fang, D.C. Vier, D.R. Smith, J.B. Pendry, D.N. Basov, X. Zhang, Science 303, 1494 (2004)

    Article  ADS  Google Scholar 

  10. S. Zhang, W.J. Fan, B.K. Minhas, A. Frauenglass, K.J. Malloy, S.R.J. Brueck, Phys. Rev. Lett. 94, 037402 (2005)

    Article  ADS  Google Scholar 

  11. S. Linden, C. Enkrich, M. Wegener, J.F. Zhou, T. Koschny, C.M. Soukoulis, Science 306, 5700 (2004)

    Article  Google Scholar 

  12. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J.F. Zhou, T. Koschny, C.M. Soukoulis, Phys. Rev. Lett. 95, 203901 (2005)

    Article  ADS  Google Scholar 

  13. S. Zhang, W.J. Fan, K.J. Malloy, S.R.J. Brueck, N.C. Panoiu, R.M. Osgood, Opt. Express 13, 4922 (2005)

    Article  ADS  Google Scholar 

  14. S. Zhang, W.J. Fan, C. Panoiu, K.J. Malloy, R.M. Osgood, S.R.J. Brueck, Phys. Rev. Lett. 95, 137404 (2005)

    Article  ADS  Google Scholar 

  15. G. Dolling, C. Enkrich, M. Wegener, J.F. Zhou, C.M. Soukoulis, Opt. Lett. 30, 3198 (2005)

    Article  ADS  Google Scholar 

  16. V.M. Shalaev, W.S. Cai, U.K. Chettiar, H.K. Yuan, A.K. Sarychev, V.P. Drachev, A.V. Kildishev, Opt. Lett. 30, 3356 (2005)

    Article  ADS  Google Scholar 

  17. A.N. Grigorenko, A.K. Geim, H.F. Gleeson, Y. Zhang, A.A. Firsov, I.Y. Khrushchev, J. Petrovic, Nature 438, 335 (2005)

    Article  ADS  Google Scholar 

  18. E. Ponizovskaya, A.M. Bratkovsky, to be published

  19. N. Katsarakis, T. Koschny, M. Kafesaki, E.N. Economou, C.M. Soukoulis, Appl. Phys. Lett. 84, 2943 (2004)

    Article  ADS  Google Scholar 

  20. R. Marques, F. Medina, R. Rafii-El-Idrissi, Phys. Rev. B 65, 144440 (2002)

    Article  ADS  Google Scholar 

  21. W.J. Padilla, cond-mat/0508307

  22. S. Zhang, W.J. Fan, K.J. Malloy, S.R.J. Brueck, N.C. Panoiu, R.O. Osgood, J. Opt. Soc. Am. B 23, 434 (2006)

    Article  ADS  Google Scholar 

  23. G. Dolling, C. Enkrich, M. Wegener, C.M. Soukoulis, S. Linden, Science 312, 892 (2006)

    Article  ADS  Google Scholar 

  24. S.Y. Chou, P.R. Krauss, P.J. Renstrom, J. Vac. Sci. Technol. B 14, 4129 (1996)

    Article  Google Scholar 

  25. G.Y. Jung, Z.Y. Li, W. Wu, Y. Chen, D.L. Olynick, S.Y. Wang, W.M. Tong, R.S. Williams, Langmuir 21, 1158 (2005)

    Article  Google Scholar 

  26. W. Wu, G.Y. Jung, D.L. Olynick, J. Straznicky, Z. Li, X. Li, D.A.A. Ohlberg, Y. Chen, S.-Y. Wang, J.A. Liddle, W.M. Tong, R.S. Williams, Appl. Phys. A 80, 1173 (2005)

    Article  Google Scholar 

  27. A. Taflove, S.C. Hagness, Computational Electrodynamics, 2nd edn. (Artech House, Boston, London, 2000)

  28. H. Raether, Surface Plasmons (Springer, Berlin, 1988)

    Google Scholar 

  29. W. Wu, Y. Liu, E.M. Kim, N.X. Fang, C. Sun, X. Zhang, Y.R. Shen, S.-Y. Wang, R.S. Williams, Appl. Phys. Lett. (submitted)

  30. D.R. Smith, S. Schultz, P. Markos, C.M. Soukoulis, Phys. Rev. B 65, 195104 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Wu.

Additional information

PACS

42.25.Bs; 81.16.Nd; 42.70.-a; 81.07.-b

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, W., Kim, E., Ponizovskaya, E. et al. Optical metamaterials at near and mid-IR range fabricated by nanoimprint lithography. Appl. Phys. A 87, 143–150 (2007). https://doi.org/10.1007/s00339-006-3834-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-006-3834-3

Keywords

Navigation