Skip to main content
Log in

Dielectric and piezoelectric properties of the KNN ceramic compound doped with Li, La and Ta

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

With the purpose of improving the dielectric and piezoelectric properties of (K0.5Na0.5)NbO3 (KNN), a multiple doping strategy was tested in this research. Piezoceramics with composition [(K0.5Na0.5)0.94Li0.06]0.97La0.01(Nb0.9Ta0.1)O3 were prepared by the traditional ceramic method. The calcined powders were sintered in their own atmosphere at 1,100 °C for 1.0, 1.5 and 2.5 h. X-ray diffraction analysis showed that the Li+, La3+ and Ta5+ cations diffuse into the KNN structure to form a perovskite-structured solid solution. For 1 h sintering time, a dominant orthorhombic phase is obtained, whereas for the longer times, the dominant phase was tetragonal. The presence of a tetragonal tungsten–bronze minority second phase is confirmed. Scanning electron micrographs show rectangular-shaped grains with a mean size of 1.1 ± 0.2 μm. The existence of pores and traces of a liquid phase favoring grain growth and homogeneity is also observed. Experimental results show an enhancement of the permittivity associated with the enlargement of the c parameter of the cell that increases with sintering time. Li+ incorporation into the structure is made evident by its transition temperature at 400 °C different from those of KNNLaTi (81–110 °C) and KNNLaTa (340 °C). An analysis of the phase transition of the samples indicates a normal rather than a diffuse transition. The electromechanical parameters k p, Q m, σ p, s 11, d 31 and g 31 are determined and compared to those of commercial PZT ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Kosec, B. Malic, A. Bencan, T. Rojac, KNN-based piezoelectric ceramics, in Piezoelectric and Acoustic Materials for Transducer Applications, ed. by A. Safari, E.K. Akdogan (Springer, New York, 2008)

  2. S.J. Zhang, R. Xia, T. Shrout, Appl. Phys. Lett. 91, 132913 (2007)

    Article  ADS  Google Scholar 

  3. M. Kosec, V. Bobnar, M. Hrovat, J. Bernard, B. Malic, J. Holc, J. Mater. Res. 19, 1849 (2004)

    Article  ADS  Google Scholar 

  4. M.D. Maeder, D. Damjanovic, N. Setter, J. Electroceram. 13, 385–392 (2004)

    Article  Google Scholar 

  5. R.E. Jaeger, L. Egerton, J. Am. Ceram. Soc. 45, 209 (1962)

    Article  Google Scholar 

  6. Y.J. Dai, X.W. Zhang, G.Y. Zhou, Appl. Phys. Lett. 90, 362903 (2007)

    Google Scholar 

  7. N. Klein, E. Hollenstein, D. Damjanovic, H.J. Trodahl, N. Setter, M. Kuball, J. Appl. Phys. 102, 014112 (2007)

    Article  ADS  Google Scholar 

  8. D. Lin, K.W. Kwok, H.L.W. Chan, Appl. Phys. A 91, 167 (2008)

    Article  ADS  Google Scholar 

  9. M. Matsubara, T. Yamaguchi, K. Kikuta, S. Hirano, J. Appl. Phys. 44, 6618–6623 (2005)

    Article  Google Scholar 

  10. H.-Y. Park, K.-H. Cho, D.-S. Paik, S. Nahma, H.-G. Lee, D.-H. Kim, J. Appl. Phys. 102, 124101 (2007)

    Article  ADS  Google Scholar 

  11. H.E. Mgbemere, M. Hinterstein, G.A. Schneider, J. Eur. Ceram. Soc. 32, 4341–4352 (2012)

    Article  Google Scholar 

  12. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Nature (London) 432, 84 (2004)

    Article  ADS  Google Scholar 

  13. E. Holleinstein, M. Davis, D. Damjanovic, N. Setter, Appl. Phys. Lett. 87, 182905 (2005)

    Article  ADS  Google Scholar 

  14. E. Holleinstein, D. Damjanovic, N. Setter, J. Eur. Ceram. Soc. 27, 4093–4097 (2007)

    Article  Google Scholar 

  15. M.D. Durruthy-Rodríguez, J.J. Gervacio-Arciniega, J. Portelles, J. Fuentes, A. Pérez, J. M. Yáñez-Limón, F.J. Espinoza-Beltrán, O. Raymond, J.M. Siqueiros, Appl. Phys. A 113(2), 515–519 (2013)

  16. H. H’Mok, A. Duarte, J. Portelles, J. Fuentes, M.D. Durruthy-Rodríguez, O. Raymond, J. Heiras, M.P. Cruz, J.M. Siqueiros, Revista Cubana Física 29(1), 28–32 (2012)

    Google Scholar 

  17. IEEE Standard on Piezoelectricity, ANSI IEEE Std. 176, 195–198 (1988)

    Google Scholar 

  18. F. Rubio-Marcos, M.A. Bañares, J.J. Romero, J.F. Fernandez, J. Raman Spectrosc. 42, 639–643 (2011)

    Article  ADS  Google Scholar 

  19. J. Hao, R. Chu, Z. Xu, G. Zang, G. Li, J. Alloys Compd. 479, 376–380 (2009)

    Article  Google Scholar 

  20. J.S. Kim, C.W. Ahn, S.Y. Lee, A. Ullah, I.W. Kim, Curr. Appl. Phys. (2011). doi:10.1016/j.cap.2011.03.04

    Google Scholar 

  21. D. Lin, K.W. Kwok, H.L.W. Chan, J. Appl. Phys. 102, 034102 (2007)

    Article  ADS  Google Scholar 

  22. H. Du, F. Tang, D. Liu, D. Zhu, W. Zhou, S. Qu, Mater. Sci. Eng. B 136, 165–169 (2007)

    Article  Google Scholar 

  23. E.A. Giess, B.A. Scott, G. Burns, D.F. O´Kane, A. Segmuller, J. Am. Ceram. Soc. 52(5), 276–281 (1969)

  24. J. Hao, Z. Xu, R. Chu, W. Li, H. Li, Q. Yin, J. Alloys Compd. 484, 233–238 (2009)

    Article  Google Scholar 

  25. M.D. Rodríguez, Efecto de sustituciones donoras en cerámicas piezoeléctricas PZT. Tesis de Doctorado, Facultad de Física, Universidad de la Habana, Cuba, (2006). Effect of donors substitutions in ceramic piezoelectrics PZT. Doctoral Thesis. Facultad de Fisica, Universidad de la Habana, Cuba, 2006

  26. M. Matsubara, T. Yamaguchi, K. Kikuta, S. Hirano, Jpn. J. Appl. Phys. 44(8), 6136–6142 (2005)

    Article  ADS  Google Scholar 

  27. K. Uchino, S. Nomura, L.E. Cross, S.J. Tang, R.E. Newnham, J. Appl. Phys. 51, 1142 (1980)

    Article  ADS  Google Scholar 

  28. Ferroperm piezoceramics (2012), http://www.ferroperm-piezo.com/

Download references

Acknowledgments

The authors are grateful to E. Aparicio and Carlos Díaz Moreno for the XRD measurements and to Odín Vázquez for the SEM micrographs and Dr. Arbelio Pentón for his advice on the FullProf software. Supports from PAPIME PE 100409, Programa México, Centroamérica y el Caribe para el avance de la Ciencia, la Tecnología y la Innovación CONACYT-ICTP-SMF, grants from DGAPA-PAPIIT-UNAM No. IN106414, 1N112610, IN107312, CONACYT 127633, 174391 and 166286 and project PNAP 10/2012 ICIMAF-Cuba are greatly acknowledged. One of the authors, J. F. thanks DGAPA-UNAM for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Siqueiros.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fuentes, J., Portelles, J., Durruthy-Rodríguez, M.D. et al. Dielectric and piezoelectric properties of the KNN ceramic compound doped with Li, La and Ta. Appl. Phys. A 118, 709–715 (2015). https://doi.org/10.1007/s00339-014-8783-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8783-7

Keywords

Navigation