Skip to main content

Advertisement

Log in

Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, we wish to present an overview of the research carried out in our laboratories with low-cost transition metal oxides (manganese dioxide, iron oxide and vanadium oxide) as active electrode materials for aqueous electrochemical supercapacitors. More specifically, the paper focuses on the approaches that have been used to increase the capacitance of the metal oxides and the cell voltage of the supercapacitor. It is shown that the cell voltage of an electrochemical supercapacitor can be increased significantly with the use of hybrid systems. The most relevant associations are Fe3O4 or activated carbon as the negative electrode and MnO2 as the positive. The cell voltage of the Fe3O4/MnO2 device is 1.8 V and this value was increased to 2.2 V by using activated carbon instead of Fe3O4. These two systems have shown superior behavior compared to a symmetric MnO2/MnO2 device which only works within a 1 V potential window in aqueous K2SO4. Furthermore, the activated carbon/MnO2 hybrid device exhibits a real power density of 605 W/kg (maximum power density =19.0 kW/kg) with an energy density of 17.3 Wh/kg. These values compete well with those of standard electrochemical double layer capacitors working in organic electrolytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Conway BE (1999) Electrochemical Supercapacitors, Scientific Fundamentals and Technological Applications. Kluwer, Plenum, New York

  2. Taberna PL, Simon P, Fauvarque JF (2003) J Electrochem Soc 150:A292

    Article  Google Scholar 

  3. Toupin M, Bélanger D, Hill IR, Quinn D (2005) J Power Sources 140:203

    Article  ADS  Google Scholar 

  4. Lust E, Janes A, Arulepp M (2004) J Electroanal Chem 562:33

    Article  Google Scholar 

  5. Vix-Guterl C, Saadallah S, Jurewicz K, Frackowiak E, Redam M, Parmentier J, Patarin J, Béguin F (2004) Mater Sci Eng B 108:148

    Article  Google Scholar 

  6. Rudge A, Davey J, Raistrick I, Gottesfeld S, Ferraris JP (1994) J Power Sources 47:89

    Article  ADS  Google Scholar 

  7. Fusalba F, El Mehdi N, Breau L, Bélanger D (1999) Chem Mater 11:2743

    Article  Google Scholar 

  8. Naudin E, Ho HA, Branchaud S, Breau L, Bélanger D (2002) J Phys Chem B 106:10585

    Article  Google Scholar 

  9. Kim H, Popov BN (2002) J Power Sources 104:52

    Article  ADS  Google Scholar 

  10. Chang K-H, Hu C-C (2004) J Electrochem Soc 151:A958

    Article  Google Scholar 

  11. Soudan P, Gaudet J, Guay D, Bélanger D, Schulz R (2002) Chem Mater 14:1210

    Article  Google Scholar 

  12. Lee HY, Goodenough JB (1999) J Solid State Chem 144:220

    Article  ADS  Google Scholar 

  13. Lee HY, Manivannan V, Goodenough JB (1999) C R Acad Sci Paris 2(serie II c):565

  14. Wu MS, Chiang PCJ (2004) Electrochem Solid-State Lett 7:A122

    Article  Google Scholar 

  15. Pang SC, Anderson MA, Chapman TW (2000) J Electrochem Soc 147:444

    Article  Google Scholar 

  16. Lee HY, Kim SW, Lee HY (2001) Electrochem Solid-State Lett 4:A19

    Article  Google Scholar 

  17. Hu CC, Tsou TW (2002) Electrochem Commun 4:105

    Article  Google Scholar 

  18. Chin SF, Pang SC, Anderson MA (2002) J Electrochem Soc 149:A379

    Article  Google Scholar 

  19. Jiang J, Kucernak A (2002) Electrochim Acta 47:2381

    Article  Google Scholar 

  20. Hu CC, Tsou TW (2002) Electrochim Acta 47:3523

    Article  Google Scholar 

  21. Jeong YU, Manthiram A (2002) J Electrochem Soc 149:A1419

    Article  Google Scholar 

  22. Broughton JN, Brett MJ (2002) Electrochem Solid-State Lett 5:A279

    Article  Google Scholar 

  23. Hong MS, Lee SH, Kim SW (2002) Electrochem Solid-State Lett 5:A227

    Article  Google Scholar 

  24. Toupin M, Brousse T, Bélanger D (2002) Chem Mater 14:3946

    Article  Google Scholar 

  25. Kim H, Popov BN (2003) J Electrochem Soc 150:D56

    Article  Google Scholar 

  26. Hu CC, Wang C-C (2003) J Electrochem Soc 150:A1079

    Article  Google Scholar 

  27. Chang JK, Tsai WT (2003) J Electrochem Soc 150:A1333

    Article  Google Scholar 

  28. Reddy RN, Reddy RG (2003) J Power Sources 124:330

    Article  ADS  Google Scholar 

  29. Brousse T, Bélanger D (2003) Electrochem Solid-State Lett 6:A244

    Article  Google Scholar 

  30. Brousse T, Toupin M, Bélanger D (2004) J Electrochem Soc 151:A614

    Article  Google Scholar 

  31. Toupin M, Brousse T, Bélanger D (2004) Chem Mater 16:3184

    Article  Google Scholar 

  32. Jones D, Wortham E, Rozière J, Favier F, Pascal JL, Monconduit L (2004) J Phys Chem Solids 65:235

    Article  ADS  Google Scholar 

  33. Chen YS, Hu CC, Wu YT (2004) J Solid-State Electrochem 8:467

    Article  Google Scholar 

  34. Zhou YK, He BL, Zhang FB, Li HL (2004) J Solid-State Electrochem 8:482

    Article  Google Scholar 

  35. Reddy RN, Reddy RG (2004) J Power Sources 132:315

    Article  ADS  Google Scholar 

  36. Chang JK, Chen YL, Tsai WT (2004) J Power Sources 135:344

    Article  ADS  Google Scholar 

  37. Chang JK, Lin CT, Tsai WT (2004) Electrochemistry Commun 6:666

    Article  Google Scholar 

  38. Wu M, Snook GA, Chen GZ, Fray DJ (2004) Electrochemistry Commun 6:499

    Article  Google Scholar 

  39. Broughton JN, Brett MJ (2004) Electrochim Acta 49:4439

    Article  Google Scholar 

  40. Raymundo-Pinero E, Khomenko V, Frackowiak E, Béguin F (2005) J Electrochem Soc 152:A229

    Article  Google Scholar 

  41. Wu N-L, Wang S-Y, Han C-Y, Wu D-S, Shiue L-R (2003) J Power Sources 113:173

    Article  ADS  Google Scholar 

  42. Wu NL (2002) Mater Chem Phys 75:6

    Article  Google Scholar 

  43. Wang SY, Wu NL (2003) J Appl Electrochem 33:345

    Article  Google Scholar 

  44. Cottineau T, Delahaye T, Brousse T, Bélanger D, in preparation

  45. Prasad KR, Koga K, Miura N (2004) Chem Mater 16:1845

    Article  Google Scholar 

  46. Prasad KR, Miura N (2004) Electrochemistry Commun 6:849

    Article  Google Scholar 

  47. Lee HY, Goodenough JB (1999) J Solid-State Chem 148:81

    Article  ADS  Google Scholar 

  48. Cottineau T, Brousse T, Bélanger D, in preparation

  49. Pourbaix M, de Zoubov N (1963) Atlas d’équilibres électrochimiques. Gautier-Villars, Paris

    Google Scholar 

  50. Hong MS, Lee SH, Kim SW (2002) Electrochem Solid-State Lett 5:A227

    Article  Google Scholar 

  51. Franger S, Bach S, Farcy J, Pereira-Ramos JP, Baffier N (2002) J Power Sources 109:262

    Article  ADS  Google Scholar 

  52. Zhou ZH, Wang J, Liu X (2001) J Mater Chem 11:1704

    Google Scholar 

  53. Kudo T, Ikeda Y, Watanabe T (2002) Solid State Ionics 153:833

    Article  Google Scholar 

  54. Villers D, Jobin D, Soucy C, Cossement D, Chahine R, Breau L, Bélanger D (2003) J Electrochem Soc 150:A747

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Brousse.

Additional information

PACS

82.47.Uv; 82.45.Fk; 82.45.Yz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cottineau, T., Toupin, M., Delahaye, T. et al. Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors. Appl. Phys. A 82, 599–606 (2006). https://doi.org/10.1007/s00339-005-3401-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-005-3401-3

Keywords

Navigation