Skip to main content
Log in

FISH-Flow: a quantitative molecular approach for describing mixed clade communities of Symbiodinium

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Our understanding of reef corals and their fate in a changing climate is limited by our ability to monitor the diversity and abundance of the dinoflagellate endosymbionts that sustain them. This study combined two well-known methods in tandem: fluorescent in situ hybridization (FISH) for genotype-specific labeling of Symbiodinium and flow cytometry to quantify the abundance of each symbiont clade in a sample. This technique (FISH-Flow) was developed with cultured Symbiodinium representing four distinct clades (based on large subunit rDNA) and was used to distinguish and quantify these types with high efficiency and few false positives. This technique was also applied to freshly isolated symbionts of Orbicella faveolata and Orbicella annularis. Isolates from acutely bleached coral tissues had significantly lower labeling efficiency; however, isolates from healthy tissue had efficiencies comparable to cultured Symbiodinium trials. RNA degradation in bleaching samples may have interfered with labeling of cells. Nevertheless, we were able to determine that, with and without thermal stress, experimental columns of the coral O. annularis hosted a majority of clade B and B/C symbionts on the top and side of the coral column, respectively. We demonstrated that, for cultured Symbiodinium and Symbiodinium freshly isolated from healthy host tissues, the relative ratio of clades could be accurately determined for clades present at as low as 7 % relative abundance. While this method does not improve upon PCR-based techniques in identifying clades at background levels, FISH-Flow provides a high precision, flexible system for targeting, quantifying and isolating Symbiodinium genotypes of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  PubMed  Google Scholar 

  • Amann R (1995) Fluorescently labeled, ribosomal-RNA-targeted oligonucleotide probes in the study Of microbial ecology. Mol Ecol 4:543–553

    Article  CAS  Google Scholar 

  • Amann R, Binder B, Olson R, Chisholm S, Devereux R, Stahl D (1990) Combination Of 16S ribosomal-RNA-targeted oligonucleotide probes with flow-cytometry for analyzing mixed microbial-populations. Appl Environ Microbiol 56:1919–1925

    CAS  PubMed Central  PubMed  Google Scholar 

  • Apprill AM, Gates RD (2007) Recognizing diversity in coral symbiotic dinoflagellate communities. Mol Ecol 16:1127–1134

    Article  CAS  PubMed  Google Scholar 

  • Baker A (2003) Flexibility and specificity in coral-algal symbiosis: Diversity, ecology, and biogeography of Symbiodinium. Annual Review of Ecology Evolution and Systematics 34:661–689

    Article  Google Scholar 

  • Baker A, Starger C, McClanahan T, Glynn P (2004) Corals’ adaptive response to climate change. Nature 430:741–741

    Google Scholar 

  • Baums IB, Johnson ME, Devlin-Durante MK, Miller MW (2010) How population genetic structure and zooxanthellae diversity of two reef-building coral species along the Florida Reef Tract and wider Caribbean. Coral Reefs 29:835–842

    Article  Google Scholar 

  • Berkelmans R, Van Oppen MJH (2006) The role of zooxanthellae in the thermal tolerance of corals: a “nugget of hope” for coral reefs in an era of climate change. Proc R Soc Biol Sci Ser B 273:2305–2312

    Article  Google Scholar 

  • Budd AF, Fukami H, Smith ND, Knowlton N (2012) Taxonomic classification of the reef coral family Mussidae (Cnidaria: Anthozoa: Scleractinia). Zool J Linn Soc 166:465–529

    Article  Google Scholar 

  • Cantin NE, van Oppen MJH, Willis BL, Mieog JC, Negri AP (2009) Juvenile corals can acquire more carbon from high-performance algal symbionts. Coral Reefs 28:405–414

    Article  Google Scholar 

  • Chen C, Wang A, Fang L, Yang Y (2005) Fluctuating algal symbiont communities in Acropora palifera (Scleractinia : Acroporidae) from Taiwan. Mar Ecol Prog Ser 295:113–121

    Article  Google Scholar 

  • Coffroth M, Poland D, Petrou E, Brazeau D (2010) Environmental symbiont acquisition may not be the solution to warming seas for reef-building corals. PLoS ONE 5:e13258

    Article  PubMed Central  PubMed  Google Scholar 

  • Correa AMS, Mcdonald MD, Baker AC (2009) Development of clade-specific Symbiodinium primers for quantitative PCR (qPCR) and their application to detecting clade D symbionts in Caribbean corals. Mar Biol 156:2403–2411

    Article  CAS  Google Scholar 

  • Cunning R, Baker AC (2012) Excess algal symbionts increase the susceptibility of reef corals to bleaching. Nat Clim Change 2:1–4

    Google Scholar 

  • Díaz-Almeyda E, Thomé PE, El Hafidi M, Iglesias-Prieto R (2011) Differential stability of photosynthetic membranes and fatty acid composition at elevated temperature in Symbiodinium. Coral Reefs 30:217–225

    Article  Google Scholar 

  • Drummond AJ, B Ashton, M Cheung, J Heled, M Keatse, R Moir, S Stones-Havas, T Thierer, A Wilson (2009) Geneious V4.8. http://www.geneious.com/

  • Fabricius K, Mieog J, Colin P, Idip D, Van Oppen M (2004) Identity and diversity of coral endosymbionts (zooxanthellae) from three Palauan reefs with contrasting bleaching, temperature and shading histories. Mol Ecol 13:2445–2458

    Article  CAS  PubMed  Google Scholar 

  • Finney JC, Pettay DT, Sampayo EM, Warner ME, Oxenford HA, LaJeunesse TC (2010) The relative significance of host-habitat, depth, and geography on the ecology, endemism, and speciation of coral endosymbionts in the genus Symbiodinium. Microb Ecol 60:250–263

    Article  PubMed  Google Scholar 

  • Fukami H, Budd A, Levitan D, Jara J, Kersanach R, Knowlton N (2004) Geographic differences in species boundaries among members of the Montastraea annularis complex based on molecular and morphological markers. Evolution 58:324–337

    CAS  PubMed  Google Scholar 

  • Garren M, Walsh SM, Caccone A, Knowlton N (2006) Patterns of association between Symbiodinium and members of the Montastraea annularis species complex on spatial scales ranging from within colonies to between geographic regions. Coral Reefs 25:503–512

    Article  Google Scholar 

  • Glynn P, Mate J, Baker A, Calderon M (2001) Coral bleaching and mortality in Panama and Ecuador during the 1997-1998 El Nino-Southern Oscillation event: Spatial/temporal patterns and comparisons with the 1982-1983 event. Bull Mar Sci 69:79–109

    Google Scholar 

  • Goulet TL (2007) Most scleractinian corals and octocorals host a single symbiotic zooxanthellae clade. Mar Ecol Prog Ser 335:243–248

    Article  Google Scholar 

  • Gruber DF, Kao H-T, Janoschka S, Tsai J, Pieribone VA (2008) Patterns of fluorescent protein expression in scleractinian corals. Biol Bull 215:143–154

    Article  PubMed  Google Scholar 

  • Kemp DW, Fitt WK, Schmidt GW (2008) A microsampling method for genotyping coral symbionts. Coral Reefs 27:289–293

    Article  Google Scholar 

  • LaJeunesse T (2001) Investigating the biodiversity, ecology, and phylogeny of endosymbiotic dinoflagellates in the genus Symbiodinium using the ITS region: in search of a “species” level marker. J Phycol 37:866–880

    Google Scholar 

  • LaJeunesse TC (2002) Diversity and community structure of symbiotic dinoflagellates from Caribbean coral reefs. Mar Biol 141:387–400

    Article  Google Scholar 

  • LaJeunesse TC, Thornhill DJ (2011) Improved resolution of reef-coral endosymbiont (Symbiodinium) species diversity, ecology, and evolution through psbA non-coding region genotyping. PLoS ONE 6:e29013

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • LaJeunesse TC, Lambert G, Andersen RA, Coffroth MA, Galbraith DW (2005) Symbiodinium (Pyrrhophyta) genome sizes (DNA content) are smallest among dinoflagellates. J Phycol 41:880–886

    Article  CAS  Google Scholar 

  • Lee CS, Yeo YSW, Sin TM (2012) Bleaching response of Symbiodinium (zooxanthellae): determination by flow cytometry. Cytometry A 81:888–895

    Article  PubMed  Google Scholar 

  • Little A, Van Oppen M, Willis B (2004) Flexibility in algal endosymbioses shapes growth in reef corals. Science 304:1492–1494

    Article  CAS  PubMed  Google Scholar 

  • Loram JE, Boonham N, O’Toole P, Trapido-Rosenthal HG, Douglas AE (2007) Molecular quantification of symbiotic dinoflagellate algae of the genus Symbiodinium. Biol Bull 212:259–268

    Article  CAS  PubMed  Google Scholar 

  • Mieog JC, van Oppen MJH, Cantin NE, Stam WT, Olsen JL (2007) Real-time PCR reveals a high incidence of Symbiodinium clade D at low levels in four scleractinian corals across the Great Barrier Reef: implications for symbiont shuffling. Coral Reefs 26:449–457

    Article  Google Scholar 

  • Mieog JC, van Oppen MJH, Berkelmans R, Stam WT, Olsen JL (2009) Quantification of algal endosymbionts (Symbiodinium) in coral tissue using real-time PCR. Mol Ecol Res 9:74–82

    Article  CAS  Google Scholar 

  • Miller PE, Scholin CA (2000) On detection of Pseudo-Nitzschia (Bacillariophyceae) species using whole cell hybridization: sample fixation and stability. J Phycol 36:238–250

    Article  Google Scholar 

  • Moberg F, Folke C (1999) Ecological goods and services of coral reef ecosystems. Ecol Econ 29:215–233

    Article  Google Scholar 

  • Muscatine L, Porter J (1977) Reef corals: mutualistic symbioses adapted to nutrient-poor environments. Bioscience 27:454–460

    Article  Google Scholar 

  • Muscatine L, McCloskey L, Marian R (1981) Estimating the daily contribution of carbon from zooxanthellae to coral animal respiration. Limnol Oceanogr 26:601–611

    Article  CAS  Google Scholar 

  • Pochon X, Gates RD (2010) A new Symbiodinium clade (Dinophyceae) from soritid foraminifera in Hawai’i. Mol Phylogenet Evol 56:492–497

    Article  CAS  PubMed  Google Scholar 

  • Pochon X, Pawlowski J, Zaninetti L, Rowan R (2001) High genetic diversity and relative specificity among Symbiodinium-like endosymbiotic dinoflagellates in soritid foraminiferans. Mar Biol 139:1069–1078

    Article  Google Scholar 

  • Pochon X, Putnam HM, Burki F, Gates RD (2012) Identifying and characterizing alternative molecular markers for the symbiotic and free-living dinoflagellate genus Symbiodinium. PLoS ONE 7:e29816

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Putnam HM, Stat M, Pochon X, Gates RD (2012) Endosymbiotic flexibility associates with environmental sensitivity in scleractinian corals. Proc R Soc Biol Sci Ser B 279:4352–4361

    Article  Google Scholar 

  • Rowan R (2004) Coral bleaching - Thermal adaptation in reef coral symbionts. Nature 430:742–742

    Google Scholar 

  • Rowan R, Powers DA (1991) A molecular genetic classification of zooxanthellae and the evolution of animal-algal symbioses. Science 251:1348–1351

    Article  CAS  PubMed  Google Scholar 

  • Rowan R, Knowlton N, Baker A, Jara J (1997) Landscape ecology of algal symbionts creates variation in episodes of coral bleaching. Nature 388:265–269

    Article  CAS  PubMed  Google Scholar 

  • Santos S, Taylor D, Kinzie R, Hidaka M, Sakai K, Coffroth M (2002) Molecular phylogeny of symbiotic dinoflagellates inferred from partial chloroplast large subunit (23S)-rDNA sequences. Mol Phylogenet Evol 23:97–111

    Article  CAS  PubMed  Google Scholar 

  • Santos SR, Gutierrez-Rodriguez C, Coffroth MA (2003) Phylogenetic identification of symbiotic dinoflagellates via length heteroplasmy in domain V of chloroplast large subunit (cp23S) – ribosomal DNA sequences. Mar Biotechnol 5:130–140

    CAS  PubMed  Google Scholar 

  • Scholin CA, Herzog M, Sogin M, Anderson DM (1994) Identification of group-and strain-specific genetic markers for globally distributed Alexandrium (Dinophyceae). II. Sequence analysis of a fragment of the LSU rRNA gene. J Phycol 30:999–1011

    Article  CAS  Google Scholar 

  • Silverstein RN, Correa AMS, Baker AC (2012) Specificity is rarely absolute in coral-algal symbiosis: implications for coral response to climate change. Proc R Soc Biol Sci Ser B 279:2609–2618

    Article  Google Scholar 

  • Smith GJ, Muscatine L (1999) Cell cycle of symbiotic dinoflagellates: variation in G(1) phase-duration with anemone nutritional status and macronutrient supply in the Aiptasia pulchella-Symbiodinium pulchrorum symbiosis. Mar Biol 134:405–418

    Article  Google Scholar 

  • Song JI, Lim HS (2001) Taxonomy of symbiotic dinoflagellates associated with Korean anthozoans. Korean J Biol Sci 5:291–297

    Article  Google Scholar 

  • Strychar KB, Sammarco PW (2009) Exaptation in corals to high seawater temperatures: Low concentrations of apoptotic and necrotic cells in host coral tissue under bleaching conditions. J Exp Mar Biol Ecol 369:31–42

    Article  Google Scholar 

  • Strychar KB, Coates M, Sammarco PW, Piva TJ (2004) Bleaching as a pathogenic response in scleractinian corals, evidenced by high concentrations of apoptotic and necrotic zooxanthellae. J Exp Mar Biol Ecol 304:99–121

    Article  Google Scholar 

  • Thornhill D, LaJeunesse T, Kemp D, Fitt W, Schmidt G (2006) Multi-year, seasonal genotypic surveys of coral-algal symbioses reveal prevalent stability or post-bleaching reversion. Mar Biol 148:711–722

    Article  Google Scholar 

  • Thornhill DJ, LaJeunesse TC, Santos SR (2007) Measuring rDNA diversity in eukaryotic microbial systems: how intragenomic variation, pseudogenes, and PCR artifacts confound biodiversity estimates. Mol Ecol 16:5326–5340

    Article  CAS  PubMed  Google Scholar 

  • Toller W, Rowan R, Knowlton N (2001) Zooxanthellae of the Montastraea annularis species complex: Patterns of distribution of four taxa of Symbiodinium on different reefs and across depths. Biol Bull 201:348–359

    Article  CAS  PubMed  Google Scholar 

  • Ulstrup KE, van Oppen MJH, Kuehl M, Ralph PJ (2007) Inter-polyp genetic and physiological characterisation of Symbiodinium in an Acropora valida colony. Mar Biol 153:225–234

    Article  Google Scholar 

  • Wallner G, Erhart R, Amann R (1995) Flow cytometric analysis of activated sludge with rRNA-targeted probes. Appl Environ Microbiol 61:1859–1866

    CAS  PubMed Central  PubMed  Google Scholar 

  • Warner M, Fitt W, Schmidt G (1999) Damage to photosystem II in symbiotic dinoflagellates: A determinant of coral bleaching. Proc Natl Acad Sci USA 96:8007–8012

    Article  CAS  PubMed  Google Scholar 

  • Yokouchi H, Takeyama H, Miyashita H, Maruyama T, Matsunaga T (2003) In situ identification of symbiotic dinoflagellates, the genus Symbiodinium with fluorescence-labeled rRNA-targeted oligonucleotide probes. J Microbiol Methods 53:327–334

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge S Santos (U of Auburn) and MA Coffroth (U of Buffalo) for providing cultured materials, B. Carter (Megamer Facility, U of California, Santa Cruz) and N. Welschmeyer for cytometry expertise and to N Knowlton and H Lessios (Smithsonian Tropical Research Institute), K Goodman (Georgia Tech.), and H Hawk (Moss Landing Marine Laboratories) for laboratory and field support. We would also like to thank the Smithsonian Tropical Research Fellowship, the David and Lucille Packard Foundation, the Dr. Earl and Ethel Myers Oceanographic and Marine Biology Trust, and the Gordon and Betty Moore Foundation for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. McIlroy.

Additional information

Communicated by Biology Editor Dr. Ruth Gates

Rights and permissions

Reprints and permissions

About this article

Cite this article

McIlroy, S.E., Smith, G.J. & Geller, J.B. FISH-Flow: a quantitative molecular approach for describing mixed clade communities of Symbiodinium . Coral Reefs 33, 157–167 (2014). https://doi.org/10.1007/s00338-013-1087-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-013-1087-0

Keywords

Navigation