Skip to main content
Log in

A Theoretical Approach to Understanding Population Dynamics with Seasonal Developmental Durations

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

There is a growing body of biological investigations to understand impacts of seasonally changing environmental conditions on population dynamics in various research fields such as single population growth and disease transmission. On the other side, understanding the population dynamics subject to seasonally changing weather conditions plays a fundamental role in predicting the trends of population patterns and disease transmission risks under the scenarios of climate change. With the host–macroparasite interaction as a motivating example, we propose a synthesized approach for investigating the population dynamics subject to seasonal environmental variations from theoretical point of view, where the model development, basic reproduction ratio formulation and computation, and rigorous mathematical analysis are involved. The resultant model with periodic delay presents a novel term related to the rate of change of the developmental duration, bringing new challenges to dynamics analysis. By investigating a periodic semiflow on a suitably chosen phase space, the global dynamics of a threshold type is established: all solutions either go to zero when basic reproduction ratio is less than one, or stabilize at a positive periodic state when the reproduction ratio is greater than one. The synthesized approach developed here is applicable to broader contexts of investigating biological systems with seasonal developmental durations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. In the model system of Molnár et al. (2013), L should be \(L(t-\tau _P)\) in the equation (8b), as well as in (1b).

References

  • Aiello, W.G., Freedman, H.I.: A time-delay model of single-species growth with stage structure. Math. Biosci. 101, 139–153 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  • Altizer, S., Dobson, A., Hosseini, P., et al.: Seasonality and the dynamics of infectious diseases. Ecol. Lett. 9, 467–484 (2006)

    Article  Google Scholar 

  • Anderson, R.M., May, R.M.: Regulation and stability of host-parasite population interactions: I. Regulatory processes. J. Anim. Ecol. 47, 219–247 (1978)

    Article  Google Scholar 

  • Bacaër, N.: Approximation of the basic reproduction number \(R_0\) for vector-borne diseases with a periodic vector population. Bull. Math. Biol. 69, 1067–1091 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Bacaër, N., Guernaoui, S.: The epidemic threshold of vector-borne diseases with seasonality: the case of cutaneous leishmaniasis in Chichaoua, Morocco. J. Math. Biol. 53, 421–436 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Bacaër, N., Ait Dads, A.H.: On the biological interpretation of a definition for the parameter \(R_0\) in periodic population models. J. Math. Biol. 65, 601–621 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Bai, Z.: Threshold dynamics of a time-delayed SEIRS model with pulse vaccination. Math. Biosci. 269, 178–185 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Barbarossa, M.V., Hadeler, K.P., Kuttler, C.: State-dependent neutral delay equations from population dynamics. J. Math. Biol. 69, 1027–1056 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Cushing, J.M.: An Introduction to Structured Population Dynamics. CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia (1998)

  • Dobson, A.P., Hudson, P.J.: Regulation and stability of a free-living host-parasite system: Trichostrongylus tenuis in red grouse. II. Population models. J. Anim. Ecol. 61, 487–498 (1992)

    Article  Google Scholar 

  • Hale, J.K., Lunel, S.M.V.: Introduction to Functional Differential Equations. Springer, New York (1993)

    Book  MATH  Google Scholar 

  • Hess, P.: Periodic-Parabolic Boundary Value Problems and Positivity, Pitman Research Notes in Mathematics, vol. 247. Longman Scientific and Technical, Harlow (1991)

    Google Scholar 

  • Inaba, H.: On a new perspective of the basic reproduction number in heterogeneous environments. J. Math. Biol. 65, 309–348 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Kao, R.R., Leathwick, D.M., Roberts, M.G., Sutherland, I.A.: Nematode parasites of sheep: a survey of epidemiological parameters and their application in a simple model. Parasitology 121, 85–103 (2000)

    Article  Google Scholar 

  • Kloosterman, M., Campbell, S.A., Poulin, F.J.: An NPZ model with state-dependent delay due to size-structure in juvenile zooplankton. SIAM J. Appl. Math. 76, 551–577 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Leroux, S.J., Larrivée, M., Boucher-Lalonde, V., et al.: Mechanistic models for the spatial spread of species under climate change. Ecol. Appl. 23, 815–828 (2013)

    Article  Google Scholar 

  • Lou, Y., Zhao, X.-Q.: Threshold dynamics in a time-delayed periodic SIS epidemic model. Discrete Contin. Dyn. Syst. Ser. B 12, 169–186 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • McCauley, E., Nisbet, R.M., De Roos, A.M., et al.: Structured population models of herbivorous zooplankton. Ecol. Monogr. 66, 479–501 (1996)

    Article  Google Scholar 

  • Molnár, P.K., Kutz, S.J., Hoar, B.M., Dobson, A.P.: Metabolic approaches to understanding climate change impacts on seasonal host-macroparasite dynamics. Ecol. Lett. 16, 9–21 (2013)

    Article  Google Scholar 

  • Ogden, N.H., Bigras-Poulin, M., O’Callaghan, C.J., et al.: A dynamic population model to investigate effects of climate on geographic range and seasonality of the tick Ixodes scapularis. Int. J. Parasitol. 35, 375–389 (2005)

    Article  Google Scholar 

  • Paaijmans, K.P., Read, A.F., Thomas, M.B.: Understanding the link between malaria risk and climate. PNAS 106, 13844–13849 (2009)

    Article  Google Scholar 

  • Posny, D., Wang, J.: Computing the basic reproductive numbers for epidemiological models in nonhomogeneous environments. Appl. Math. Comput. 242, 473–490 (2014)

    MathSciNet  MATH  Google Scholar 

  • Rebelo, C., Margheri, A., Bacaër, N.: Persistence in some periodic epidemic models with infection age or constant periods of infection. Discrete Contin. Dyn. Syst. Ser. B 19, 1155–1170 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Roberts, M.G.: A pocket guide to host-parasite models. Parasitol. Today 11, 172–177 (1995)

    Article  Google Scholar 

  • Roberts, M.G.: The immunoepidemiology of nematode parasites of farmed animals: a mathematical approach. Parasitol. Today 15, 246–251 (1999)

    Article  Google Scholar 

  • Roberts, M.G., Grenfell, B.T.: The population dynamics of nematode infections of ruminants: periodic perturbations as a model for management. IMA J. Math. Appl. Med. Biol. 8, 83–93 (1991)

    Article  MATH  Google Scholar 

  • Roberts, M.G., Heesterbeek, J.A.: The dynamics of nematode infections of farmed ruminants. Parasitol 110, 493–502 (1995)

    Article  Google Scholar 

  • Rosà, R., Rizzoli, A., Ferrari, N., Pugliese, A.: Models for host-macroparasite interactions in micromammals. In: Krasnov, B.R., Poulin, R. (eds.) Micromammals and Macroparasites from Evolutionary Study to Management, Morand, pp. 319–348. Springer, Tokyo (2006)

    Chapter  Google Scholar 

  • Ruan, S.: Delay differential equations in single species dynamics. In: Arino, O., Hbid, M.L., Ait Dads, E. (eds.) Delay Differential Equations and Applications, pp. 477–517. Springer, Berlin (2006)

    Chapter  Google Scholar 

  • Smith, H.L.: Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems. Mathematical Surveys and Monographs, vol. 41. American Mathematical Society (1995)

  • Stancampiano, L., Usai, F.: The role of density-dependent arrested larval stages on parasite dynamics and stability: lessons from nematodes and donkeys. Ecol. Model. 297, 69–79 (2015)

    Article  Google Scholar 

  • Stevenson, T.J., Visser, M.E., Arnold, W., et al.: Disrupted seasonal biology impacts health, food security and ecosystems. Proc. R. Soc. B 282, 1453 (2015)

    Article  Google Scholar 

  • Thieme, H.R.: Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity. SIAM J. Appl. Math. 70, 188–211 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, J., Ogden, N.H., Zhu, H.: The impact of weather conditions on Culex pipiens and Culex restuans (Diptera: Culicidae) abundance: a case study in Peel region. J. Med. Entomol. 48, 468–475 (2011)

    Article  Google Scholar 

  • Wang, W., Zhao, X.-Q.: Threshold dynamics for compartmental epidemic models in periodic environments. J. Dyn. Differ. Equ. 20, 699–717 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Webb, G.F.: Theory of Nonlinear Age-Dependent Population Dynamics. Marcel Dekker, New York (1985)

    MATH  Google Scholar 

  • Wood, I.B., Hansen, M.F.: Experimental transmission of ruminant nematodes of the genera Cooperia, Ostertagia and Haenronchus to laboratory rabbits. J. Parasitol. 46, 775–776 (1960)

    Article  Google Scholar 

  • Wu, X., Duvvuri, V.R., Lou, Y., et al.: Developing a temperature-driven map of the basic reproductive number of the emerging tick vector of Lyme disease Ixodes scapularis in Canada. J. Theor. Biol. 319, 50–61 (2013)

    Article  MathSciNet  Google Scholar 

  • Wu, X., Magpantay, F.M.G., Wu, J., Zou, X.: Stage-structured population systems with temporally periodic delay. Math. Methods Appl. Sci. 38, 3464–3481 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, L., Wang, Z.-C., Zhao, X.-Q.: Threshold dynamics of a time periodic reaction–diffusion epidemic model with latent period. J. Differ. Equ. 258, 3011–3036 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao, X.-Q.: Dynamical Systems in Population Biology. Springer-Verlag, New York (2003)

    Book  MATH  Google Scholar 

  • Zhao, X.-Q.: Basic reproduction ratios for periodic compartmental models with time delay. J. Dyn. Differ. Equ. (2015). doi:10.1007/s10884-015-9425-2

Download references

Acknowledgements

The authors would like to thank Drs. Drew Posny and Jin Wang for their help in the numerical computation of \(R_0\). Yijun Lou would also like to thank the Department of Mathematics and Statistics at Memorial University of Newfoundland for the hospitality and support during his visit in the summer of 2015. We are very grateful to two anonymous referees for their careful reading and helpful suggestions which led to an improvement in our original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yijun Lou.

Additional information

Communicated by Philip K. Maini.

Y. Lou’s research is supported in part by the NSFC (11301442) and RGC (PolyU 253004/14P). X.-Q. Zhao’s research is supported in part by the NSERC of Canada.

Appendix

Appendix

To numerically compute the basic reproduction ratio, we are going to rewrite the linear operator L into the form of Eq. (3) in Posny and Wang (2014), where an algorithm is proposed for the \(R_0\) computation of periodic ordinary differential systems. We should also note that other algorithms have been proposed, such as Bacaër (2007), for periodic growth models with time delay. However, here the delay is periodic and therefore, we first fit our computation into a former algorithm. Since

$$\begin{aligned} F(t-s)\left( \begin{array}{c} \phi _1 \\ \phi _2\end{array}\right) =\left( \begin{array}{c}b_L(t-s) \phi _2(-\tau _L(t-s))\\ b_P(t-s) \phi _1(-\tau _P(t-s))\end{array}\right) , \end{aligned}$$

we have

$$\begin{aligned}{}[Lv](t)= & {} \int _0^{\infty }Z(t,t-s)F(t-s)v(t-s+\cdot )ds \\= & {} \int _0^{\infty }\left( \begin{array}{llll}e^{-\int _{t-s}^t d_L(\xi )d\xi } &{} 0 \\ 0 &{} e^{-\int _{t-s}^t d_P(\xi )d\xi } \end{array}\right) \left( \begin{array}{c}b_L(t-s) v_2(t-s-\tau _L(t-s))\\ b_P(t-s) v_1(t-s-\tau _P(t-s))\end{array}\right) ds \\= & {} \left( \begin{array}{c}\int _0^{\infty }e^{-\int _{t-s}^t d_L(\xi )d\xi }b_L(t-s) v_2(t-s-\tau _L(t-s)) ds \\ \int _0^{\infty }e^{-\int _{t-s}^t d_P(\xi )d\xi }b_P(t-s) v_1(t-s-\tau _P(t-s)) ds \end{array}\right) . \end{aligned}$$

Let \(t-s-\tau _L(t-s)=t-s_1\). Since the function \(y=x-\tau _L(x)\) is strictly increasing, the inverse function exists and we can solve \(x=h_L(y)\). Hence, we obtain \(t-s=h_L(t-s_1)\), that is, \(s=t-h_L(t-s_1)\), \(ds_1=d(s+\tau _L(t-s))=(1-\tau _L'(t-s))ds\) and \(ds=\frac{1}{1-\tau _L'(h_L(t-s_1))}ds_1\). Therefore,

$$\begin{aligned}&\int _0^{\infty }e^{-\int _{t-s}^t d_L(\xi )d\xi }b_L(t-s) v_2(t-s-\tau _L(t-s)) ds \\= & {} \int _{\tau _L(t)}^{\infty }\frac{e^{-\int _{h_L(t-s_1)}^t d_L(\xi )d\xi }b_L(h_L(t-s_1)) }{1-\tau _L'(h_L(t-s_1))}v_2(t-s_1)ds_1 \\= & {} \int _{\tau _L(t)}^{\infty }\frac{e^{-\int _{h_L(t-s)}^t d_L(\xi )d\xi }b_L(h_L(t-s)) }{1-\tau _L'(h_L(t-s))}v_2(t-s)ds. \end{aligned}$$

Similarly, let \(t-s-\tau _P(t-s)=t-s_2\). Assume the inverse function of \(y=x-\tau _P(x)\) is \(y=h_P(x)\). Solving \(t-s=h_P(t-s_2)\), we get

$$\begin{aligned} s=t-h_P(t-s_2), ds_2=(1-\tau _P'(t-s))ds \text { and } ds=\frac{1}{1-\tau _P'(h_P(t-s_2))}ds_2. \end{aligned}$$

Therefore,

$$\begin{aligned}&\int _0^{\infty }e^{-\int _{t-s}^t d_P(\xi )d\xi }b_P(t-s) v_1(t-s-\tau _P(t-s)) ds \\= & {} \int _{\tau _P(t)}^{\infty }\frac{e^{-\int _{h_P(t-s_2)}^t d_P(\xi )d\xi }b_P(h_P(t-s_2)) }{1-\tau _P'(h_P(t-s_2))}v_1(t-s_2)ds_2 \\= & {} \int _{\tau _P(t)}^{\infty }\frac{e^{-\int _{h_P(t-s)}^t d_P(\xi )d\xi }b_P(h_P(t-s)) }{1-\tau _P'(h_P(t-s))}v_1(t-s)ds. \end{aligned}$$

Define

$$\begin{aligned} K_{12}(t,s)=\left\{ \begin{array}{lrl} 0, &{} s<\tau _L(t) \\ \frac{e^{-\int _{h_L(t-s)}^t d_L(\xi )d\xi }b_L(h_L(t-s)) }{1-\tau _L'(h_L(t-s))}, &{} s\ge \tau _L(t) \\ \end{array}\right. \end{aligned}$$

and

$$\begin{aligned} K_{21}(t,s)=\left\{ \begin{array}{lrl} 0, &{} s<\tau _P(t) \\ \frac{e^{-\int _{h_P(t-s)}^t d_P(\xi )d\xi }b_P(h_P(t-s)) }{1-\tau _P'(h_P(t-s))}, &{} s\ge \tau _P(t) \\ \end{array}\right. \end{aligned}$$

while \(K_{11}(t,s)=K_{22}(t,s)=0\). Then we can rewrite

$$\begin{aligned} \begin{array}{lrl} [Lv](t) &{}=&{} \int _0^{\infty }K(t,s)v(t-s)ds \\ &{}=&{} \sum \limits _{j=0}^{\infty }\int _{j\omega }^{(j+1)\omega }K(t,s)v(t-s)ds \\ &{}=&{} \sum \limits _{j=0}^{\infty }\int _{0}^{\omega }K(t,j\omega +s)v(t-s-j\omega )ds \\ &{}=&{} \int _{0}^{\omega }G(t,s)v(t-s)ds \\ \end{array} \end{aligned}$$

with

$$\begin{aligned} G(t,s)=\sum \limits _{j=0}^{\infty }K(t,j\omega +s), \end{aligned}$$

which is of the integral form in Posny and Wang (2014). Thus, the numerical algorithm in Posny and Wang (2014) can be used to compute the basic reproduction ratio for our model system.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lou, Y., Zhao, XQ. A Theoretical Approach to Understanding Population Dynamics with Seasonal Developmental Durations. J Nonlinear Sci 27, 573–603 (2017). https://doi.org/10.1007/s00332-016-9344-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-016-9344-3

Keywords

Mathematics Subject Classification

Navigation