Skip to main content

Advertisement

Log in

Clinical experience with multihance in CNS imaging

  • Contrast Optimization in MRI
  • Published:
European Radiology Aims and scope Submit manuscript

Summary

The use of Gd-BOPTA as a contrast agent for morphological and functional MR imaging allows improved detection and delineation of CNS lesions compared with conventional gadolinium agents. This not only leads to more confident diagnoses being made, but also results in a substantially improved differential diagnostic process. The higher relaxivity of Gd-BOPTA helps to optimize functional MR imaging studies, for example, perfusion MR imaging and dynamic MR angiographic protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brant-Zawadski M, Norman D, Newton TH (1984) Magnetic resonance imaging of the brain: the optimal screening technique. Radiology 152:71–77

    Google Scholar 

  2. Muroff LR, Runge VM (1995) The use of MR contrast in neoplastic disease of the brain. Top Magn Reson Imaging 7:137–157

    Article  PubMed  CAS  Google Scholar 

  3. Edelmann RR, Hesselink JR, Zlatkin MB (1996): Clinical magnetic resonance imaging. Second edition. W.B. Saunders

  4. Essig M, Knopp MV, Schoenberg SO, Hawighorst H, Wenz F, Debus J, van Kaick G (1999) Contrast enhanced fast fluid-attenuated inversion-recovery (FLAIR) MR imaging in the assessment of primary glial tumors and brain metastases. Radiology 210:551–557

    PubMed  CAS  Google Scholar 

  5. Erickson BJ, Campeau NG, Schreiner SA, Buckner JC, O'Neill BP, O'Fallon JR (2002) Triple-dose contrast/magnetization transfer suppressed imaging of ‘non-enhancing’ brain gliomas. J Neurooncol 60:25–29.

    Article  PubMed  Google Scholar 

  6. Schneider G, Kirchin MA, Pirovano G et al (2001) Gadobenate dimeglumine-enhanced magnetic resonance imaging of intracranial metastases: effect of dose on lesion detection and delineation. J Magn Reson Imaging 14:525–539

    Article  PubMed  CAS  Google Scholar 

  7. de Haën C, Cabrini M, Akhnana L, Ratti D, Calabi L, Gozzini L (1999) Gadobenate dimeglumine 0.5M solution for injection (MultiHance): Pharmaceutical formulation and physicochemical properties of a new magnetic resonance imaging contrast medium. J Comput Assist Tomogr 23 (suppl. 1):161–168.

    Google Scholar 

  8. Yuh WTC, Fisher DJ, Engelken JD et al (1991) MR evaluation of CNS tumors: dose comparison study with gadopentetate dimeglumine and gadoteridol. Radiology 180:485–491

    PubMed  CAS  Google Scholar 

  9. Myhr G, Rinck PA, Børseth A (1992) Gadodiamide injection and gadopentetate dimeglumine: a double-blind study in MR imaging of the CNS. Acta Radiologica, 33:405–409

    Article  PubMed  CAS  Google Scholar 

  10. Valk J, Algra PR, Hazenberg CJ, Slooff WBM, Slavand MG (1993) A double-blind, comparative study of gadodiamide injection and gadopentetate dimeglumine in MRI of the central nervous system. Neuroradiology 35:173–177

    Article  PubMed  CAS  Google Scholar 

  11. Oudkerk M, Sijens PE, van Beek EJ, Kuijpers TJ (1995) Safety and efficacy of Dotarem (Gd-DOTA) versus Magnevist (Gd-DTPA) in magnetic resonance imaging of the central nervous system. Invest Radiol 30:75–78

    Article  PubMed  CAS  Google Scholar 

  12. Greco A, Parker JR, Ratcliffe CG, Kirchin MA, McNamara MT (2001) Phase III, randomized, double-blind, cross-over comparison of gadoteridol and gadopentetate dimeglumine in magnetic resonance imaging of patients with intracranial lesions. Australas Radiol 45:457–463

    Article  PubMed  CAS  Google Scholar 

  13. Cavagna FM, Maggioni F, Castelli PM et al (1997) Gd chelates with weak binding to serum proteins. A new class of high-efficiency, general purpose contrast agents for magnetic resonance imaging. Invest Radiol 32:780–796

    Article  PubMed  CAS  Google Scholar 

  14. Knopp MV, Schoenberg SO, Rehm C et al (2002) Assessment of gadobenate dimeglumine (Gd-BOPTA) for MR angiography: Phase I studies. Invest Radiol 37:706–715

    Article  PubMed  CAS  Google Scholar 

  15. Rosati G, Pirovano G, Spinazzi A (1994). Interim results of phase II clinical testing of gadobenate dimeglumine. Invest Radiol 29:S183-S185

    Article  PubMed  Google Scholar 

  16. Ruscalleda J, Kirchin MA, La Noce A, Pirovano G, Spinazzi A (1999) Multihance in the assessment of intracranial tumors: results of phase II clinical studies. J Comput Assist Tomogr 23 (Suppl. 1):S19-S27

    PubMed  Google Scholar 

  17. Balériaux D, Colosimo C, Ruscalleda J, et al (2002) Magnetic resonance imaging of metastatic disease to the brain with gadobenate dimeglumine. Neuroradiology 44:191–203

    Article  PubMed  Google Scholar 

  18. Schneider G, Kirchin MA, Pirovano G et al (2001) Gadobenate dimeglumine-enhanced magnetic resonance imaging of intracranial metastases: effect of dose on lesion detection and delineation. J Magn Reson Imaging 14:525–539

    Article  PubMed  CAS  Google Scholar 

  19. Runge VM, Armstrong MR, Barr RG et al (2001) A clinical comparison of the safety and efficacy of MultiHance (gadobenate dimeglumine) and Omniscan (gadodiamide) in magnetic resonance imaging in patients with central nervous system pathology. Invest Radiol 36:65–71

    Article  PubMed  CAS  Google Scholar 

  20. Runge V, Parker JR, Donovan M (2002) Double-blind, efficacy evaluation of gadobenate dimeglumine, a gadolinium chelate with enhanced relaxivity, in malignant lesions of the brain. Invest Radiol 37:269–280

    Article  PubMed  Google Scholar 

  21. Colosimo C, Ruscalleda J, Korves M, et al (2001) Detection of intracranial metastases: a multi-center, intra-patient comparison of gadobenate dimeglumine-enhanced MRI with routinely used contrast agents at equal dose. Invest Radiol 36:72–81

    Article  PubMed  CAS  Google Scholar 

  22. Essig M, Hartmann M, Lodemann KP, Janson O, Runge V, Knopp MV (2001) Vergleich des Kontrastverhaltens von Gd-BOPTA und Gd-DTPA bei intraaxialen Hirntumoren: Eine doppelblinde randomisierte intraindividuelle Vergleichsstudie. Radiologe 41:1063–1071 [in German]

    Article  PubMed  CAS  Google Scholar 

  23. Knopp MV, Runge VM, Essig M, et al (2003) Primary and secondary brain tumors: a bicentric intra-individual crossover comparison of gadobenate dimeglumine with gadopentetate dimeglumine for lesion enhancement. Radiology (in press)

    Google Scholar 

  24. Colosimo C, Knopp MV, Barreau X, et al (2003) Is increased contrast agent relaxivity beneficial for enhanced MR imaging of brain tumors: blinded intraindividual comparison of Gd-BOPTA and Gd-DOTA. Neuroradiology (in press)

    Google Scholar 

  25. Bednarz G, Downes B, Werner-Wasik M, Rosenwasser RH (2000) Combining stereotactic angiography and 3D time-of-flight magnetic resonance angiography in treatment planning for arteriovenous malformation radiosurgery. Int J Radiat Oncol Biol Phys 46:1149–1154

    Article  PubMed  CAS  Google Scholar 

  26. Ikawa F, Sumida M, Uozumi T, et al (1995) Demonstration of the venous systems with gadolinium-enhanced three-dimensional phase-contrast MR venography. Neurosurg Rev 18:101–107

    Article  PubMed  CAS  Google Scholar 

  27. Essig M, Reichenbach J, Schad LR, Schönberg SO, Knopp MV, Kaiser WA (1999) High-resolution MR venography of cerebral arteriovenous malformations Magn Reson Imag 17:1417–1425

    Article  CAS  Google Scholar 

  28. Schlemmer H-P, Heß T, Debus J, Knopp MV, Schad LR, Engenhart R (1994) TOF-MR-Angiographie bei strahlen-therapeutisch behandelten zerebralen arteriovenösen Malformationen. Radiologe 34:447–453

    PubMed  CAS  Google Scholar 

  29. Stevenson J, Knopp EA, Litt AW (1995) MP-RAGE Subtraction venography: A new technique. J Magn Res Imag 5:239–241

    CAS  Google Scholar 

  30. Sardanelli F, Zandrino F, Parodi RC, De Caro G (1999) MR Angiography of internal carotid arteries: breath-hold Gd-enhanced 3D fast imaging with steady-state precession versus unenhanced 2D and 3D time-of-flight techniques. J Comput Assist Tomogr 23:208–215

    Article  PubMed  CAS  Google Scholar 

  31. Duran M, Schoenberg SO, Yuh WTC, Knopp MV, van Kaick G, Essig M (2002) Cerebral arteriovenous malformations: morphologic evaluation by ultrashort 3D gadolinium-enhanced MR angiography. Eur Radiol 12:2957–2964

    PubMed  CAS  Google Scholar 

  32. Balériaux DL, Metens T, Neugroschl C, Sadeghi N, David P, Rodesch G (2002) Improved dynamic MRDSA of brain AVM with gadobenate dimeglumine (Gd-BOPTA). Presented at 88th Scientific Assembly and Annual meeting of the Radiological Society of North America, Chicago, Illinois, USA. Radiology 225 (Suppl) p.282 (abstract)

    Google Scholar 

  33. Schaefer PW, Hunter GJ, He J, Hamberg LM, Sorensen AG, Schwamm LH, Koroshetz WJ, Gonzalez RG (2002) Predicting cerebral ischemic infarct volume with diffusion and perfusion MR imaging. Am J Neuroradiol 23:1785–1794

    PubMed  Google Scholar 

  34. Essig M, Wenz F, Scholdei R, Bruening R, Berchtenbreiter C, Meurer M, Knopp MV (2002) Effect of contrast media dosage and contrast media extravasation on dynamic susceptibility-contrast enhanced dynamic echo-planar imaging of cerebral gliomas Acta Radiol 43:354–359

    Article  PubMed  CAS  Google Scholar 

  35. Bozzao A, Floris R, Baviera ME, Apruzzese A, Simonetti G (2001) Diffusion and perfusion MR imaging in cases of Alzheimer's disease: correlations with cortical atrophy and lesion load. Am J Neuroradiol 22:1030–1036

    PubMed  CAS  Google Scholar 

  36. Essig M, Lodemann KP, LeHuu M, Schonberg SO, Hubener M, Van Kaick G (2002) Comparison of MultiHance” and Gadovist” for cerebral MR perfusion imaging in healthy volunteers. Radiologe 42:909–915

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Essig, M. Clinical experience with multihance in CNS imaging. Eur Radiol 13 (Suppl 3), N3–N10 (2003). https://doi.org/10.1007/s00330-003-0001-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-003-0001-5

Keywords

Navigation