Skip to main content

Computed Tomography Angiography

  • Chapter
  • First Online:
Neuroimaging Techniques in Clinical Practice

Abstract

Computed tomography angiography (CTA) provides additive information to conventional CT in neuroradiology. It visualizes vascular structures after intravascular injection of a radiopaque contrast material. With the introduction of multi-detector-row spiral CT, CTA has become the standard technique for fast and accurate vascular imaging. Image acquisition, contrast timing and image reconstructions play an important role regarding image quality, diagnostic capability and radiation dose. Clinical applications range from ischemic and haemorrhagic stroke, vasculopathies, venous thrombosis to dissection. In this chapter, the acquisition and technical details of CTA will be discussed, followed by the different applications of CTA in neuro-imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rodallec MH, Krainik A, Feydy A, Helias A, Colombani JM, Julles MC, et al. Cerebral venous thrombosis and multidetector CT angiography: tips and tricks. Radiographics. 2006;26(Suppl 1):S5–18; discussion S42–3. Epub 2006/10/20.

    Article  PubMed  Google Scholar 

  2. Biswas S, Chandran A, Roughley S, Bhojak M, Das K. Cerebral CT venography using a 320-MDCT scanner with a time-density curve technique and low volume of contrast agent: comparison with fixed time-delay technique. AJR Am J Roentgenol. 2015;205(6):1269–75; Epub 2015/11/21.

    Article  PubMed  Google Scholar 

  3. Beenen LF, Sierink JC, Kolkman S, Nio CY, Saltzherr TP, Dijkgraaf MG, et al. Split bolus technique in polytrauma: a prospective study on scan protocols for trauma analysis. Acta Radiol. 2015;56(7):873–80; Epub 2014/07/19.

    Article  PubMed  Google Scholar 

  4. Waaijer A, Prokop M, Velthuis BK, Bakker CJ, de Kort GA, van Leeuwen MS. Circle of Willis at CT angiography: dose reduction and image quality—reducing tube voltage and increasing tube current settings. Radiology. 2007;242(3):832–9; Epub 2007/01/19.

    Article  PubMed  Google Scholar 

  5. Smith AB, Dillon WP, Gould R, Wintermark M. Radiation dose-reduction strategies for neuroradiology CT protocols. AJNR Am J Neuroradiol. 2007;28(9):1628–32; Epub 2007/09/26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Postma AA, Das M, Stadler AA, Wildberger JE. Dual-energy CT: what the neuroradiologist should know. Curr Radiol Rep. 2015;3(5):16; Epub 2015/03/31.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Faby S, Kuchenbecker S, Sawall S, Simons D, Schlemmer HP, Lell M, et al. Performance of today’s dual energy CT and future multi energy CT in virtual non-contrast imaging and in iodine quantification: a simulation study. Med Phys. 2015;42(7):4349–66; Epub 2015/07/03.

    Article  PubMed  Google Scholar 

  8. Kortman HG, Smit EJ, Oei MT, Manniesing R, Prokop M, Meijer FJ. 4D-CTA in neurovascular disease: a review. AJNR Am J Neuroradiol. 2015;36(6):1026–33; Epub 2014/10/31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Oei MTH, Meijer FJA, van der Woude WJ, Smit EJ, van Ginneken B, Prokop M, et al. Interleaving cerebral CT perfusion with neck CT angiography part I. proof of concept and accuracy of cerebral perfusion values. Eur Radiol. 2017;27(6):2649–56; Epub 2016/10/09.

    Article  PubMed  Google Scholar 

  10. Oei MTH, Meijer FJA, van der Woude WJ, Smit EJ, van Ginneken B, Manniesing R, et al. Interleaving cerebral CT perfusion with neck CT angiography. Part II: clinical implementation and image quality. Eur Radiol. 2017;27(6):2411–8; Epub 2016/09/22.

    Article  PubMed  Google Scholar 

  11. Niesten JM, van der Schaaf IC, Riordan AJ, de Jong HW, Horsch AD, Eijspaart D, et al. Radiation dose reduction in cerebral CT perfusion imaging using iterative reconstruction. Eur Radiol. 2014;24(2):484–93; Epub 2013/10/16.

    Article  PubMed  Google Scholar 

  12. Smit EJ, Vonken EJ, Meijer FJ, Dankbaar JW, Horsch AD, van Ginneken B, et al. Timing-invariant CT angiography derived from CT perfusion imaging in acute stroke: a diagnostic performance study. AJNR Am J Neuroradiol. 2015;36(10):1834–8; Epub 2015/06/27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Smit EJ, Vonken EJ, van der Schaaf IC, Mendrik AM, Dankbaar JW, Horsch AD, et al. Timing-invariant reconstruction for deriving high-quality CT angiographic data from cerebral CT perfusion data. Radiology. 2012;263(1):216–25; Epub 2012/02/15.

    Article  PubMed  Google Scholar 

  14. Menon BK, d’Esterre CD, Qazi EM, Almekhlafi M, Hahn L, Demchuk AM, et al. Multiphase CT angiography: a new tool for the imaging triage of patients with acute ischemic stroke. Radiology. 2015;275(2):510–20; Epub 2015/01/31.

    Article  PubMed  Google Scholar 

  15. Aviv RI, Parsons M, Bivard A, Jahromi B, Wintermark M. Multiphase CT angiography: a poor man’s perfusion CT? Radiology. 2015;277(3):922–4; Epub 2015/11/26.

    Article  PubMed  Google Scholar 

  16. Fishman EK, Ney DR, Heath DG, Corl FM, Horton KM, Johnson PT. Volume rendering versus maximum intensity projection in CT angiography: what works best, when, and why. Radiographics. 2006;26(3):905–22; Epub 2006/05/17.

    Article  PubMed  Google Scholar 

  17. Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, et al. Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation. 2017;135(10):e146–603; Epub 2017/01/27.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hacke W, Kaste M, Bluhmki E, Brozman M, Davalos A, Guidetti D, et al. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med. 2008;359(13):1317–29; Epub 2008/09/26.

    Article  CAS  PubMed  Google Scholar 

  19. Berkhemer OA, Fransen PS, Beumer D, van den Berg LA, Lingsma HF, Yoo AJ, et al. A randomized trial of intraarterial treatment for acute ischemic stroke. N Engl J Med. 2015;372(1):11–20; Epub 2014/12/18.

    Article  PubMed  CAS  Google Scholar 

  20. Wintermark M, Luby M, Bornstein NM, Demchuk A, Fiehler J, Kudo K, et al. International survey of acute stroke imaging used to make revascularization treatment decisions. Int J Stroke. 2015;10(5):759–62; Epub 2015/04/03.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wintermark M, Sanelli PC, Albers GW, Bello J, Derdeyn C, Hetts SW, et al. Imaging recommendations for acute stroke and transient ischemic attack patients: a joint statement by the American Society of Neuroradiology, the American College of Radiology, and the Society of NeuroInterventional Surgery. AJNR Am J Neuroradiol. 2013;34(11):E117–27; Epub 2013/08/03.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Albers GW, Marks MP, Kemp S, Christensen S, Tsai JP, Ortega-Gutierrez S, et al. Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N Engl J Med. 2018;378:708–18; Epub 2018/01/25.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Nogueira RG, Jadhav AP, Haussen DC, Bonafe A, Budzik RF, Bhuva P, et al. Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct. N Engl J Med. 2017;378:11–21; Epub 2017/11/14.

    Article  PubMed  Google Scholar 

  24. Saver JL. Time is brain—quantified. Stroke. 2006;37(1):263–6; Epub 2005/12/13.

    Article  PubMed  Google Scholar 

  25. Hirai T, Korogi Y, Ono K, Nagano M, Maruoka K, Uemura S, et al. Prospective evaluation of suspected stenoocclusive disease of the intracranial artery: combined MR angiography and CT angiography compared with digital subtraction angiography. AJNR Am J Neuroradiol. 2002;23(1):93–101; Epub 2002/02/06.

    PubMed  PubMed Central  Google Scholar 

  26. Katz DA, Marks MP, Napel SA, Bracci PM, Roberts SL. Circle of Willis: evaluation with spiral CT angiography, MR angiography, and conventional angiography. Radiology. 1995;195(2):445–9; Epub 1995/05/01.

    Article  CAS  PubMed  Google Scholar 

  27. Nguyen-Huynh MN, Wintermark M, English J, Lam J, Vittinghoff E, Smith WS, et al. How accurate is CT angiography in evaluating intracranial atherosclerotic disease? Stroke. 2008;39(4):1184–8; Epub 2008/02/23.

    Article  PubMed  Google Scholar 

  28. Verro P, Tanenbaum LN, Borden NM, Sen S, Eshkar N. CT angiography in acute ischemic stroke: preliminary results. Stroke. 2002;33(1):276–8; Epub 2002/01/10.

    Article  CAS  PubMed  Google Scholar 

  29. Sharma M, Fox AJ, Symons S, Jairath A, Aviv RI. CT angiographic source images: flow- or volume-weighted? AJNR Am J Neuroradiol. 2011;32(2):359–64; Epub 2010/11/06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dave P, Lum C, Thornhill R, Chakraborty S, Dowlatshahi D. Hypoattenuation on CTA images with large vessel occlusion: timing affects conspicuity. Neuroradiology. 2017;59(5):471–5; Epub 2017/04/02.

    Article  PubMed  Google Scholar 

  31. van Seeters T, Biessels GJ, Niesten JM, van der Schaaf IC, Dankbaar JW, Horsch AD, et al. Reliability of visual assessment of non-contrast CT, CT angiography source images and CT perfusion in patients with suspected ischemic stroke. PLoS One. 2013;8(10):e75615; Epub 2013/10/12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. d’Esterre CD, Trivedi A, Pordeli P, Boesen M, Patil S, Hwan Ahn S, et al. Regional comparison of multiphase computed tomographic angiography and computed tomographic perfusion for prediction of tissue fate in ischemic stroke. Stroke. 2017;48(4):939–45; Epub 2017/03/16.

    Article  PubMed  Google Scholar 

  33. van Seeters T, Biessels GJ, Kappelle LJ, van der Schaaf IC, Dankbaar JW, Horsch AD, et al. CT angiography and CT perfusion improve prediction of infarct volume in patients with anterior circulation stroke. Neuroradiology. 2016;58(4):327–37; Epub 2016/01/16.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Tan IY, Demchuk AM, Hopyan J, Zhang L, Gladstone D, Wong K, et al. CT angiography clot burden score and collateral score: correlation with clinical and radiologic outcomes in acute middle cerebral artery infarct. AJNR Am J Neuroradiol. 2009;30(3):525–31; Epub 2009/01/17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tan JC, Dillon WP, Liu S, Adler F, Smith WS, Wintermark M. Systematic comparison of perfusion-CT and CT-angiography in acute stroke patients. Ann Neurol. 2007;61(6):533–43.

    Article  PubMed  Google Scholar 

  36. Bang OY, Saver JL, Kim SJ, Kim GM, Chung CS, Ovbiagele B, et al. Collateral flow predicts response to endovascular therapy for acute ischemic stroke. Stroke. 2011;42(3):693–9; Epub 2011/01/15.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Berkhemer OA, Jansen IG, Beumer D, Fransen PS, van den Berg LA, Yoo AJ, et al. Collateral status on baseline computed tomographic angiography and intra-arterial treatment effect in patients with proximal anterior circulation stroke. Stroke. 2016;47(3):768–76; Epub 2016/02/24.

    Article  CAS  PubMed  Google Scholar 

  38. Smit EJ, Vonken EJ, van Seeters T, Dankbaar JW, van der Schaaf IC, Kappelle LJ, et al. Timing-invariant imaging of collateral vessels in acute ischemic stroke. Stroke. 2013;44(8):2194–9; Epub 2013/06/14.

    Article  CAS  PubMed  Google Scholar 

  39. Frolich AM, Wolff SL, Psychogios MN, Klotz E, Schramm R, Wasser K, et al. Time-resolved assessment of collateral flow using 4D CT angiography in large-vessel occlusion stroke. Eur Radiol. 2014;24(2):390–6; Epub 2013/10/01.

    Article  PubMed  Google Scholar 

  40. van den Wijngaard IR, Holswilder G, Wermer MJ, Boiten J, Algra A, Dippel DW, et al. Assessment of collateral status by dynamic CT angiography in acute MCA stroke: timing of acquisition and relationship with final infarct volume. AJNR Am J Neuroradiol. 2016;37:1231–6; Epub 2016/04/02.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Menon BK, O’Brien B, Bivard A, Spratt NJ, Demchuk AM, Miteff F, et al. Assessment of leptomeningeal collaterals using dynamic CT angiography in patients with acute ischemic stroke. J Cereb Blood Flow Metab. 2013;33(3):365–71; Epub 2012/11/15.

    Article  PubMed  Google Scholar 

  42. Garcia-Tornel A, Carvalho V, Boned S, Flores A, Rodriguez-Luna D, Pagola J, et al. Improving the evaluation of collateral circulation by multiphase computed tomography angiography in acute stroke patients treated with endovascular reperfusion therapies. Interv Neurol. 2016;5(3–4):209–17; Epub 2016/10/27.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Byrne D, Sugrue G, Stanley E, Walsh JP, Murphy S, Kavanagh EC, et al. Improved detection of anterior circulation occlusions: the “delayed vessel sign” on multiphase CT angiography. AJNR Am J Neuroradiol. 2017;38(10):1911–6; Epub 2017/08/12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yu AY, Zerna C, Assis Z, Holodinsky JK, Randhawa PA, Najm M, et al. Multiphase CT angiography increases detection of anterior circulation intracranial occlusion. Neurology. 2016;87(6):609–16; Epub 2016/07/08.

    PubMed  PubMed Central  Google Scholar 

  45. Rohan V, Baxa J, Tupy R, Cerna L, Sevcik P, Friesl M, et al. Length of occlusion predicts recanalization and outcome after intravenous thrombolysis in middle cerebral artery stroke. Stroke. 2014;45(7):2010–7; Epub 2014/06/12.

    Article  CAS  PubMed  Google Scholar 

  46. Riedel CH, Zimmermann P, Jensen-Kondering U, Stingele R, Deuschl G, Jansen O. The importance of size: successful recanalization by intravenous thrombolysis in acute anterior stroke depends on thrombus length. Stroke. 2011;42(6):1775–7; Epub 2011/04/09.

    Article  PubMed  Google Scholar 

  47. Teunissen C, Habets J, Velthuis BK, Cramer MJ, Loh P. Double-contrast, single-phase computed tomography angiography for ruling out left atrial appendage thrombus prior to atrial fibrillation ablation. Int J Cardiovasc Imaging. 2017;33(1):121–8; Epub 2016/09/08.

    Article  PubMed  Google Scholar 

  48. Amarenco P, Cohen A, Tzourio C, Bertrand B, Hommel M, Besson G, et al. Atherosclerotic disease of the aortic arch and the risk of ischemic stroke. N Engl J Med. 1994;331(22):1474–9; Epub 1994/12/01.

    Article  CAS  PubMed  Google Scholar 

  49. Chatzikonstantinou A, Krissak R, Fluchter S, Artemis D, Schaefer A, Schoenberg SO, et al. CT angiography of the aorta is superior to transesophageal echocardiography for determining stroke subtypes in patients with cryptogenic ischemic stroke. Cerebrovasc Dis. 2012;33(4):322–8; Epub 2012/02/22.

    Article  CAS  PubMed  Google Scholar 

  50. Di Tullio MR, Russo C, Jin Z, Sacco RL, Mohr JP, Homma S. Aortic arch plaques and risk of recurrent stroke and death. Circulation. 2009;119(17):2376–82; Epub 2009/04/22.

    Article  PubMed  PubMed Central  Google Scholar 

  51. de Weert TT, Ouhlous M, Meijering E, Zondervan PE, Hendriks JM, van Sambeek MR, et al. In vivo characterization and quantification of atherosclerotic carotid plaque components with multidetector computed tomography and histopathological correlation. Arterioscler Thromb Vasc Biol. 2006;26(10):2366–72; Epub 2006/08/12.

    Article  PubMed  CAS  Google Scholar 

  52. Gupta A, Baradaran H, Schweitzer AD, Kamel H, Pandya A, Delgado D, et al. Carotid plaque MRI and stroke risk: a systematic review and meta-analysis. Stroke. 2013;44(11):3071–7; Epub 2013/08/31.

    Article  PubMed  Google Scholar 

  53. Rothwell PM, Gibson R, Warlow CP. Interrelation between plaque surface morphology and degree of stenosis on carotid angiograms and the risk of ischemic stroke in patients with symptomatic carotid stenosis. On behalf of the European Carotid Surgery Trialists’ Collaborative Group. Stroke. 2000;31(3):615–21; Epub 2000/03/04.

    Article  CAS  PubMed  Google Scholar 

  54. U-King-Im JM, Fox AJ, Aviv RI, Howard P, Yeung R, Moody AR, et al. Characterization of carotid plaque hemorrhage: a CT angiography and MR intraplaque hemorrhage study. Stroke. 2010;41(8):1623–9; Epub 2010/06/26.

    Article  PubMed  Google Scholar 

  55. Wardlaw JM, Chappell FM, Best JJ, Wartolowska K, Berry E. Non-invasive imaging compared with intra-arterial angiography in the diagnosis of symptomatic carotid stenosis: a meta-analysis. Lancet. 2006;367(9521):1503–12; Epub 2006/05/09.

    Article  CAS  PubMed  Google Scholar 

  56. de Rooij NK, Linn FH, van der Plas JA, Algra A, Rinkel GJ. Incidence of subarachnoid haemorrhage: a systematic review with emphasis on region, age, gender and time trends. J Neurol Neurosurg Psychiatry. 2007;78(12):1365–72; Epub 2007/05/02.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Nieuwkamp DJ, Setz LE, Algra A, Linn FH, de Rooij NK, Rinkel GJ. Changes in case fatality of aneurysmal subarachnoid haemorrhage over time, according to age, sex, and region: a meta-analysis. Lancet Neurol. 2009;8(7):635–42; Epub 2009/06/09.

    Article  PubMed  Google Scholar 

  58. van Gijn J, Kerr RS, Rinkel GJ. Subarachnoid haemorrhage. Lancet. 2007;369(9558):306–18.

    Article  PubMed  Google Scholar 

  59. Wiebers DO, Whisnant JP, Huston J 3rd, Meissner I, Brown RD Jr, Piepgras DG, et al. Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment. Lancet. 2003;362(9378):103–10; Epub 2003/07/18.

    Article  PubMed  Google Scholar 

  60. Boussel L, Rayz V, McCulloch C, Martin A, Acevedo-Bolton G, Lawton M, et al. Aneurysm growth occurs at region of low wall shear stress: patient-specific correlation of hemodynamics and growth in a longitudinal study. Stroke. 2008;39(11):2997–3002; Epub 2008/08/09.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Dhar S, Tremmel M, Mocco J, Kim M, Yamamoto J, Siddiqui AH, et al. Morphology parameters for intracranial aneurysm rupture risk assessment. Neurosurgery. 2008;63(2):185–96; discussion 96–7. Epub 2008/09/18.

    Article  PubMed  Google Scholar 

  62. Morita A, Kirino T, Hashi K, Aoki N, Fukuhara S, Hashimoto N, et al. The natural course of unruptured cerebral aneurysms in a Japanese cohort. N Engl J Med. 2012;366(26):2474–82; Epub 2012/06/29.

    Article  PubMed  Google Scholar 

  63. Raghavan ML, Ma B, Harbaugh RE. Quantified aneurysm shape and rupture risk. J Neurosurg. 2005;102(2):355–62; Epub 2005/03/03.

    Article  PubMed  Google Scholar 

  64. Backes D, Vergouwen MDI, Groenestege ATT, Bor ASE, Velthuis BK, Greving JP, et al. PHASES score for prediction of intracranial aneurysm growth. Stroke. 2015;46(5):1221–6.

    Article  PubMed  Google Scholar 

  65. Greving JP, Wermer MJH, Brown RD, Morita A, Juvela S, Yonekura M, et al. Development of the PHASES score for prediction of risk of rupture of intracranial aneurysms: a pooled analysis of six prospective cohort studies. Lancet Neurol. 2014;13(1):59–66.

    Article  PubMed  Google Scholar 

  66. McCormack RF, Hutson A. Can computed tomography angiography of the brain replace lumbar puncture in the evaluation of acute-onset headache after a negative noncontrast cranial computed tomography scan? Acad Emerg Med Off J Soc Acad Emerg Med. 2010;17(4):444–51; Epub 2010/04/08.

    Article  Google Scholar 

  67. Guo W, He XY, Li XF, Qian DX, Yan JQ, Bu DL, et al. Meta-analysis of diagnostic significance of sixty-four-row multi-section computed tomography angiography and three-dimensional digital subtraction angiography in patients with cerebral artery aneurysm. J Neurol Sci. 2014;346(1–2):197–203; Epub 2014/09/10.

    Article  PubMed  Google Scholar 

  68. Bechan RS, van Rooij SB, Sprengers ME, Peluso JP, Sluzewski M, Majoie CB, et al. CT angiography versus 3D rotational angiography in patients with subarachnoid hemorrhage. Neuroradiology. 2015;57(12):1239–46; Epub 2015/09/06.

    Article  CAS  PubMed  Google Scholar 

  69. Kalra VB, Wu X, Matouk CC, Malhotra A. Use of follow-up imaging in isolated perimesencephalic subarachnoid hemorrhage: a meta-analysis. Stroke. 2015;46(2):401–6; Epub 2014/12/20.

    Article  PubMed  Google Scholar 

  70. Rinkel GJ, Wijdicks EF, Vermeulen M, Ramos LM, Tanghe HL, Hasan D, et al. Nonaneurysmal perimesencephalic subarachnoid hemorrhage: CT and MR patterns that differ from aneurysmal rupture. AJNR Am J Neuroradiol. 1991;12(5):829–34; Epub 1991/09/01.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Schaafsma JD, Velthuis BK, Majoie CB, van den Berg R, Brouwer PA, Barkhof F, et al. Intracranial aneurysms treated with coil placement: test characteristics of follow-up MR angiography—multicenter study. Radiology. 2010;256(1):209–18; Epub 2010/05/28.

    Article  PubMed  Google Scholar 

  72. Roele ED, Timmer V, Vaassen LAA, van Kroonenburgh A, Postma AA. Dual-energy CT in head and neck imaging. Curr Radiol Rep. 2017;5(5):19; Epub 2017/04/25.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Luo Z, Wang D, Sun X, Zhang T, Liu F, Dong D, et al. Comparison of the accuracy of subtraction CT angiography performed on 320-detector row volume CT with conventional CT angiography for diagnosis of intracranial aneurysms. Eur J Radiol. 2012;81(1):118–22; Epub 2011/06/03.

    Article  PubMed  Google Scholar 

  74. Josephson CB, White PM, Krishan A, Al-Shahi SR. Computed tomography angiography or magnetic resonance angiography for detection of intracranial vascular malformations in patients with intracerebral haemorrhage. Cochrane Database Syst Rev. 2014;9:CD009372; Epub 2014/09/02.

    Google Scholar 

  75. van Asch CJ, Velthuis BK, Rinkel GJ, Algra A, de Kort GA, Witkamp TD, et al. Diagnostic yield and accuracy of CT angiography, MR angiography, and digital subtraction angiography for detection of macrovascular causes of intracerebral haemorrhage: prospective, multicentre cohort study. BMJ. 2015;351:h5762; Epub 2015/11/11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Willems PW, Taeshineetanakul P, Schenk B, Brouwer PA, Terbrugge KG, Krings T. The use of 4D-CTA in the diagnostic work-up of brain arteriovenous malformations. Neuroradiology. 2012;54(2):123–31; Epub 2011/04/06.

    Article  PubMed  Google Scholar 

  77. Chandran A, Radon M, Biswas S, Das K, Puthuran M, Nahser H. Novel use of 4D-CTA in imaging of intranidal aneurysms in an acutely ruptured arteriovenous malformation: is this the way forward? J Neurointerv Surg. 2016;8(9):e36; Epub 2015/07/17.

    Article  PubMed  Google Scholar 

  78. Rodriguez-Luna D, Coscojuela P, Rodriguez-Villatoro N, Juega JM, Boned S, Muchada M, et al. Multiphase CT angiography improves prediction of intracerebral hemorrhage expansion. Radiology. 2017;285(3):932–40; Epub 2017/07/06.

    Article  PubMed  Google Scholar 

  79. Rodriguez-Luna D, Dowlatshahi D, Aviv RI, Molina CA, Silva Y, Dzialowski I, et al. Venous phase of computed tomography angiography increases spot sign detection, but intracerebral hemorrhage expansion is greater in spot signs detected in arterial phase. Stroke. 2014;45(3):734–9; Epub 2014/02/01.

    Article  PubMed  Google Scholar 

  80. Dowlatshahi D, Brouwers HB, Demchuk AM, Hill MD, Aviv RI, Ufholz LA, et al. Predicting intracerebral hemorrhage growth with the spot sign: the effect of onset-to-scan time. Stroke. 2016;47(3):695–700; Epub 2016/02/06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Dentali F, Gianni M, Crowther MA, Ageno W. Natural history of cerebral vein thrombosis: a systematic review. Blood. 2006;108(4):1129–34; Epub 2006/04/13.

    Article  CAS  PubMed  Google Scholar 

  82. Stam J. Thrombosis of the cerebral veins and sinuses. N Engl J Med. 2005;352(17):1791–8; Epub 2005/04/29.

    Article  CAS  PubMed  Google Scholar 

  83. Gosk-Bierska I, Wysokinski W, Brown RD Jr, Karnicki K, Grill D, Wiste H, et al. Cerebral venous sinus thrombosis: incidence of venous thrombosis recurrence and survival. Neurology. 2006;67(5):814–9; Epub 2006/09/13.

    Article  CAS  PubMed  Google Scholar 

  84. Poon CS, Chang JK, Swarnkar A, Johnson MH, Wasenko J. Radiologic diagnosis of cerebral venous thrombosis: pictorial review. AJR Am J Roentgenol. 2007;189(6 Suppl):S64–75; Epub 2007/12/06.

    Article  PubMed  Google Scholar 

  85. Khandelwal N, Agarwal A, Kochhar R, Bapuraj JR, Singh P, Prabhakar S, et al. Comparison of CT venography with MR venography in cerebral sinovenous thrombosis. AJR Am J Roentgenol. 2006;187(6):1637–43; Epub 2006/11/23.

    Article  CAS  PubMed  Google Scholar 

  86. Leach JL, Fortuna RB, Jones BV, Gaskill-Shipley MF. Imaging of cerebral venous thrombosis: current techniques, spectrum of findings, and diagnostic pitfalls. Radiographics. 2006;26(Suppl 1):S19–41; discussion S2–3. Epub 2006/10/20.

    Article  PubMed  Google Scholar 

  87. Ishimaru H, Ochi M, Morikawa M, Takahata H, Matsuoka Y, Koshiishi T, et al. Accuracy of pre- and postcontrast 3D time-of-flight MR angiography in patients with acute ischemic stroke: correlation with catheter angiography. AJNR Am J Neuroradiol. 2007;28(5):923–6; Epub 2007/05/15.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Sugino T, Mikami T, Ohtaki S, Hirano T, Iihoshi S, Houkin K, et al. Assessment of moyamoya disease using multidetector row computed tomography. J Stroke Cerebrovasc Dis. 2013;22(5):644–9; Epub 2012/03/01.

    Article  PubMed  Google Scholar 

  89. Tian B, Jiang Y, Kang Q, Xu B, Liu R, Liu Q, et al. Comparative study of 4D CTA and DSA for vascular assessment in moyamoya disease. Clin Imaging. 2017;48:74–8; Epub 2017/10/22.

    Article  PubMed  Google Scholar 

  90. Okada Y, Shima T, Nishida M, Yamane K, Yamada T, Yamanaka C. Effectiveness of superficial temporal artery-middle cerebral artery anastomosis in adult moyamoya disease: cerebral hemodynamics and clinical course in ischemic and hemorrhagic varieties. Stroke. 1998;29(3):625–30; Epub 1998/03/20.

    Article  CAS  PubMed  Google Scholar 

  91. Besachio DA, Ziegler JI, Duncan TD, Wanebo JS. Computed tomographic angiography in evaluation of superficial temporal to middle cerebral artery bypass. J Comput Assist Tomogr. 2010;34(3):437–9; Epub 2010/05/26.

    Article  PubMed  Google Scholar 

  92. Teksam M, McKinney A, Truwit CL. Multi-slice CT angiography in evaluation of extracranial-intracranial bypass. Eur J Radiol. 2004;52(3):217–20; Epub 2004/11/17.

    Article  PubMed  Google Scholar 

  93. Fleck SK, Langner S, Baldauf J, Kirsch M, Rosenstengel C, Schroeder HW. Blunt craniocervical artery injury in cervical spine lesions: the value of CT angiography. Acta Neurochir. 2010;152(10):1679–86; Epub 2010/05/25.

    Article  PubMed  Google Scholar 

  94. Fleck SK, Langner S, Baldauf J, Kirsch M, Kohlmann T, Schroeder HW. Incidence of blunt craniocervical artery injuries: use of whole-body computed tomography trauma imaging with adapted computed tomography angiography. Neurosurgery. 2011;69(3):615–23; discussion 23–4. Epub 2011/04/19.

    Article  PubMed  Google Scholar 

  95. Langner S, Fleck S, Kirsch M, Petrik M, Hosten N. Whole-body CT trauma imaging with adapted and optimized CT angiography of the craniocervical vessels: do we need an extra screening examination? AJNR Am J Neuroradiol. 2008;29(10):1902–7; Epub 2008/09/12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Nguyen D, Platon A, Shanmuganathan K, Mirvis SE, Becker CD, Poletti PA. Evaluation of a single-pass continuous whole-body 16-MDCT protocol for patients with polytrauma. AJR Am J Roentgenol. 2009;192(1):3–10; Epub 2008/12/23.

    Article  PubMed  Google Scholar 

  97. Provenzale JM, Sarikaya B. Comparison of test performance characteristics of MRI, MR angiography, and CT angiography in the diagnosis of carotid and vertebral artery dissection: a review of the medical literature. AJR Am J Roentgenol. 2009;193(4):1167–74; Epub 2009/09/23.

    Article  PubMed  Google Scholar 

  98. Vertinsky AT, Schwartz NE, Fischbein NJ, Rosenberg J, Albers GW, Zaharchuk G. Comparison of multidetector CT angiography and MR imaging of cervical artery dissection. AJNR Am J Neuroradiol. 2008;29(9):1753–60; Epub 2008/07/19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Eastman AL, Chason DP, Perez CL, McAnulty AL, Minei JP. Computed tomographic angiography for the diagnosis of blunt cervical vascular injury: is it ready for primetime? J Trauma. 2006;60(5):925–9; discussion 9. Epub 2006/05/12.

    Article  PubMed  Google Scholar 

  100. Rodallec MH, Marteau V, Gerber S, Desmottes L, Zins M. Craniocervical arterial dissection: spectrum of imaging findings and differential diagnosis. Radiographics. 2008;28(6):1711–28; Epub 2008/10/22.

    Article  PubMed  Google Scholar 

  101. Schievink WI. Spontaneous dissection of the carotid and vertebral arteries. N Engl J Med. 2001;344(12):898–906; Epub 2001/03/22.

    Article  CAS  PubMed  Google Scholar 

  102. Chen CJ, Tseng YC, Lee TH, Hsu HL, See LC. Multisection CT angiography compared with catheter angiography in diagnosing vertebral artery dissection. AJNR Am J Neuroradiol. 2004;25(5):769–74; Epub 2004/05/14.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan W. Dankbaar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dankbaar, J.W., Smit, E.J., Velthuis, B.K. (2020). Computed Tomography Angiography. In: Mannil, M., Winklhofer, SX. (eds) Neuroimaging Techniques in Clinical Practice. Springer, Cham. https://doi.org/10.1007/978-3-030-48419-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-48419-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-48418-7

  • Online ISBN: 978-3-030-48419-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics