Skip to main content
Log in

Seasonal acclimation and latitudinal adaptation are of the same magnitude in Mytilus edulis and Mytilus trossulus mitochondrial respiration

  • Short Note
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Species distribution models often assume homogeneous physiological performance within a species distribution range. This assumption potentially underestimates the distribution as it neglects physiological plasticity and adaptation among species and populations. Better knowledge on the physiological variation is, therefore, needed to better predict the effects of global warming on species distribution. Mussels in the genus Mytilus are known to display latitudinal variation in whole animal aerobic metabolism. Here we test the hypothesis that latitudinal variation in whole animal metabolic rate of two congeners of Mytilus (Mytilus edulis collected 56°N, and Mytilus trossulus collected 77°N) is related to differences in mitochondrial respiration. We further investigated the changes in mitochondrial respiration following long-term cold-water acclimation of M. edulis. We assessed mitochondrial respiration after five months of acclimation to 1 and 15 °C. At similar experimental temperatures, mitochondrial respiration in animals acclimated to 1 °C was higher compared to those acclimated to 15 °C. After five months of acclimation, 1 °C-acclimated M. edulis had similar mitochondrial respiration as 1 °C-acclimated M. trossulus despite their different geographical origin. Our data indicate that mitochondrial capacity does not support latitudinal observed differences in whole animal metabolism between M. edulis and M. trossulus. However, we reveal that mitochondrial respiration in M. edulis can increase by 283% after cold acclimation. Combined, our results show that seasonal variation in mitochondrial respiration is of the same magnitude as large-scale (>1000 km) latitudinal variation. The high respiratory plasticity in Mytilus spp. improves fitness in changing temperature environments and supports their large biogeographic distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Ballantyne JS, Moon TW (1985) Hepatopancreas mitochondria from Mytilus edulis. Mar Biol 87:239–244. doi:10.1007/BF00397800

    Article  CAS  Google Scholar 

  • Blicher ME, Sejr MK, Høgslund S (2013) Population structure of Mytilus edulis in the intertidal zone in a sub-Arctic fjord, SW Greenland. Mar Ecol Prog Ser 487:89–100. doi:10.3354/meps10317

    Article  Google Scholar 

  • Braby CE, Somero GN (2006) Following the heart: Temperature and salinity effects on heart rate in native and invasive species of blue mussels (genus Mytilus). J Exp Biol 209:2554–2566. doi:10.1242/Jeb.02259

    Article  PubMed  Google Scholar 

  • Brand MD, Chien LF, Ainscow EK, Rolfe DFS, Porter RK (1994) The causes and functions of mitochondrial proton leak. Bba-Bioenergetics 1187:132–139. doi:10.1016/0005-2728(94)90099-X

  • Brooks SJ, Farmen E, Heier LS, Blanco-Rayon E, Izagirre U (2015) Differences in copper bioaccumulation and biological responses in three Mytilus species. Aquat Toxicol 160:1–12. doi:10.1016/j.aquatox.2014.12.018

    Article  CAS  PubMed  Google Scholar 

  • Chung DJ, Schulte PM (2015) Mechanisms and costs of mitochondrial thermal acclimation in a eurythermal killifish (Fundulus heteroclitus). J Exp Biol 218:1621–1631. doi:10.1242/jeb.120444

    Article  PubMed  Google Scholar 

  • De Lisi A, Prato E, Biandolino F, Sarli G, Negro D, La Piana G, Marzulli D (2013) Hepatopancreas mitochondria of Mytilus galloprovincialis: Effect of zinc ions on mitochondrial bioenergetics and metabolism. Turk J Biol 37:565–572. doi:10.3906/biy-1301-52

    Article  Google Scholar 

  • Eguíluz VM, Fernández-Gracia J, Irigoien X, Duarte CM (2016) A quantitative assessment of Arctic shipping in 2010–2014. Sci Rep 6:30682. doi:10.1038/srep30682

    Article  PubMed Central  PubMed  Google Scholar 

  • Fangue NA, Richards JG, Schulte PM (2009) Do mitochondrial properties explain intraspecific variation in thermal tolerance? J Exp Biol 212:514–522. doi:10.1242/Jeb.024034

    Article  CAS  PubMed  Google Scholar 

  • Fly EK, Hilbish TJ (2013) Physiological energetics and biogeographic range limits of three congeneric mussel species. Oecologia 172:35–46. doi:10.1007/s00442-012-2486-6

    Article  PubMed  Google Scholar 

  • Gosling E (2015) Marine Bivalve Molluscs, 2nd edn. Wiley, United Kingdom. doi:10.1002/9781119045212

    Book  Google Scholar 

  • Guderley H, St-Pierre JS (2002) Going with the flow or life in the fast lane: contrasting mitochondrial responses to thermal change. J Exp Biol 205:2237–2249

    PubMed  Google Scholar 

  • Hawkins AJS, Bayne BL, Day AJ (1986) Protein turnover, physiological energetics and heterozygosity in the blue mussel, Mytilus edulis: the basis of variable age-specific growth. Proc R Soc Ser B 229:161–176. doi:10.1098/rspb.1986.0080

    Article  CAS  Google Scholar 

  • Hazel JR, Prosser CL (1974) Molecular mechanisms of temperature compensation in poikilotherms. Physiol Rev 54:620–677

    CAS  PubMed  Google Scholar 

  • Hazel JR, Williams EE (1990) The role of alterations in membrane lipid composition in enabling physiological adaptation of organisms to their physical environment. Prog Lipid Res 29:167–227. doi:10.1016/0163-7827(90)90002-3

    Article  CAS  PubMed  Google Scholar 

  • Høgslund S, Sejr MK, Wiktor J Jr, Blicher ME, Wegeberg S (2014) Intertidal community composition along rocky shores in South-west Greenland: A quantitative approach. Polar Biol 37:1549–1561. doi:10.1007/s00300-014-1541-7

    Article  Google Scholar 

  • Hulbert AJ, Else PL (2000) Mechanisms underlying the cost of living in animals. Annu Rev Physiol 62:207–235. doi:10.1146/annurev.physiol.62.1.207

    Article  CAS  PubMed  Google Scholar 

  • Jansen JM, Pronker AE, Kube S, Sokolowski A, Sola JC, Marquiegui MA, Schiedek D, Bonga SW, Wolowicz M, Hummel H (2007) Geographic and seasonal patterns and limits on the adaptive response to temperature of European Mytilus spp. and Macoma balthica populations. Oecologia 154:23–34. doi:10.1007/S00442-007-0808-X

    Article  PubMed Central  PubMed  Google Scholar 

  • Jensen AS (1905) On the mollusca of East Greenland. In: Meddelelser om Grønland, vol 29. Kommissionen for videnskabelige undersøgelser i Grønland, Copenhagen, pp 289–362

  • Johnston IA, Calvo J, Guderley H, Fernandez D, Palmer L (1998) Latitudinal variation in the abundance and oxidative capacities of muscle mitochondria in perciform fishes. J Exp Biol 201:1–12

    CAS  PubMed  Google Scholar 

  • Kraffe E, Marty Y, Guderley H (2007) Changes in mitochondrial oxidative capacities during thermal acclimation of rainbow trout Oncorhynchus mykiss: Roles of membrane proteins, phospholipids and their fatty acid compositions. J Exp Biol 210:149–165. doi:10.1242/jeb.02628

    Article  CAS  PubMed  Google Scholar 

  • Lannig G, Storch D, Pörtner HO (2005) Aerobic mitochondrial capacities in Antarctic and temperate eelpout (Zoarcidae) subjected to warm versus cold acclimation. Polar Biol 28:575–584. doi:10.1007/s00300-005-0730-9

    Article  Google Scholar 

  • Liu ZM, Wang GZ, Wu LS, Zeng ZS, Chen XL (2013) Seasonal change in mitochondrial function and metabolic enzyme activity of different populations of the mud crab, Scylla paramamosain, from China. Aquaculture 376:68–75. doi:10.1016/j.aquaculture.2012.11.007

    Article  Google Scholar 

  • Logan CA, Kost LE, Somero GN (2012) Latitudinal differences in Mytilus californianus thermal physiology. Mar Ecol Prog Ser 450:93–105. doi:10.3354/meps09491

    Article  Google Scholar 

  • Lucas JM, Vaccaro E, Waite JH (2002) A molecular, morphometric and mechanical comparison of the structural elements of byssus from Mytilus edulis and Mytilus galloprovincialis. J Exp Biol 205:1807–1817

    CAS  PubMed  Google Scholar 

  • Mathiesen SS, Thyrring J, Hemmer-Hansen J, Berge J, Sukhotin A, Leopold P, Bekaert M, Sejr MK, Nielsen EE (2017) Genetic diversity and connectivity within Mytilus spp. in the subarctic and Arctic. Evol Appl 10:39–55. doi:10.1111/eva.12415

    Article  PubMed  Google Scholar 

  • Misfeldt M, Fago A, Gesser H (2009) Nitric oxide increases myocardial efficiency in the hypoxia-tolerant turtle Trachemys scripta. J Exp Biol 212:954–960. doi:10.1242/jeb.025171

    Article  CAS  PubMed  Google Scholar 

  • Myrand B, Tremblay R, Sévigny J-M (2002) Selection against blue mussels (Mytilus edulis L.) homozygotes under various stressful conditions. J Hered 93:238–248. doi:10.1093/jhered/93.4.238

    Article  CAS  PubMed  Google Scholar 

  • Pacifici M, Foden WB, Visconti P, Watson JFM, Butchart SHM, Kovacs KM, Scheffers BR, Hole DG, Martin TG, Akcakaya HR, Corlett RT, Huntley B, Bickford D, Carr JA, Hoffmann AA, Midgley GF, Pearce-Kelly P, Pearson RG, Williams SE, Willis SG, Young B, Rondinini C (2015) Assessing species vulnerability to climate change. Nature Clim Change 5:215–225. doi:10.1038/Nclimate2448

    Article  Google Scholar 

  • Pörtner HO (2002) Climate variations and the physiological basis of temperature dependent biogeography: Systemic to molecular hierarchy of thermal tolerance in animals. Comp Biochem Physiol A Physiol 132:739–761. doi:10.1016/S1095-6433(02)00045-4

    Article  Google Scholar 

  • Rawson PD, Harper FM (2009) Colonization of the northwest Atlantic by the blue mussel, Mytilus trossulus postdates the last glacial maximum. Mar Biol 156:1857–1868. doi:10.1007/s00227-009-1218-x

    Article  Google Scholar 

  • Rawson PD, Hilbish TJ (1995) Evolutionary relationships among the male and female mitochondrial DNA lineages in the Mytilus edulis species complex. Mol Biol Evol 12:893–901

    CAS  PubMed  Google Scholar 

  • Renaud PE, Sejr MK, Bluhm BA, Sirenko B, Ellingsen IH (2015) The future of Arctic benthos: Expansion, invasion, and biodiversity. Prog Oceanogr 139:244–257. doi:10.1016/j.pocean.2015.07.007

    Article  Google Scholar 

  • Riginos C, Cunningham CW (2005) Local adaptation and species segregation in two mussel (Mytilus edulis x Mytilus trossulus) hybrid zones. Mol Ecol 14:381–400. doi:10.1111/j.1365-294X.2004.02379.x

    Article  CAS  PubMed  Google Scholar 

  • Robinson LM, Elith J, Hobday AJ, Pearson RG, Kendall BE, Possingham HP, Richardson AJ (2011) Pushing the limits in marine species distribution modelling: Lessons from the land present challenges and opportunities. Global Ecol Biogeogr 20:789–802. doi:10.1111/J.1466-8238.2010.00636.X

    Article  Google Scholar 

  • Schulte PM (2015) The effects of temperature on aerobic metabolism: Towards a mechanistic understanding of the responses of ectotherms to a changing environment. J Exp Biol 218:1856–1866. doi:10.1242/jeb.118851

    Article  PubMed  Google Scholar 

  • Seed R, Suchanek TH (1992) Population and community ecology of Mytilus. In: Gosling E (ed) The mussel Mytilus: ecology, physiology, genetics and culture. Elsevier Science Publisher B.V., Amsterdam, pp 87–169

    Google Scholar 

  • Sommer AM, Pörtner HO (2004) Mitochondrial function in seasonal acclimatization versus latitudinal adaptation to cold in the lugworm Arenicola marina (L.). Physiol Biochem Zool 77:174–186. doi:10.1086/381468

    Article  CAS  PubMed  Google Scholar 

  • Stillman JH (2003) Acclimation capacity underlies susceptibility to climate change. Science 301:65–65. doi:10.1126/science.1083073

    Article  CAS  PubMed  Google Scholar 

  • Thyrring J, Juhl BK, Holmstrup M, Blicher ME, Sejr MK (2015a) Does acute lead (Pb) contamination influence membrane fatty acid composition and freeze tolerance in intertidal blue mussels in arctic Greenland? Ecotoxicology 24:2036–2042. doi:10.1007/s10646-015-1539-0

    Article  CAS  PubMed  Google Scholar 

  • Thyrring J, Rysgaard S, Blicher ME, Sejr MK (2015b) Metabolic cold adaptation and aerobic performance of blue mussels (Mytilus edulis) along a temperature gradient into the High Arctic region. Mar Biol 162:235–243. doi:10.1007/s00227-014-2575-7

    Article  CAS  Google Scholar 

  • Tomanek L, Zuzow MJ (2010) The proteomic response of the mussel congeners Mytilus galloprovincialis and M. trossulus to acute heat stress: Implications for thermal tolerance limits and metabolic costs of thermal stress. J Exp Biol 213:3559–3574. doi:10.1242/jeb.041228

    Article  CAS  PubMed  Google Scholar 

  • Wenne R, Bach L, Zbawicka M, Strand J, McDonald JH (2016) A first report on coexistence and hybridization of Mytilus trossulus and M. edulis mussels in Greenland. Polar Biol 39:343–355. doi:10.1007/s00300-015-1785-x

    Article  Google Scholar 

Download references

Acknowledgements

This study received funding from the 15 June Foundation. JT was supported by a grant from Naalakkersuisut (The government of Greenland). The authors would like to thank Dr. Hans Gesser from the Department of Zoophysiology, Aarhus University for excellent advice on mitochondrial respiration. We also thank associate professor Kurt Thomas Jensen from the Department of Aquatic Biology, Aarhus University for anatomical advice on Mytilus. We gratefully acknowledge Kattegatcentret, Denmark, for providing seawater. This work is a contribution to the Arctic Science Partnership (ASP): http://www.asp-net.org.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakob Thyrring.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thyrring, J., Bundgaard, A. & Sejr, M.K. Seasonal acclimation and latitudinal adaptation are of the same magnitude in Mytilus edulis and Mytilus trossulus mitochondrial respiration. Polar Biol 40, 1885–1891 (2017). https://doi.org/10.1007/s00300-016-2064-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-016-2064-1

Keywords

Navigation