Skip to main content

Advertisement

Log in

Intertidal community composition along rocky shores in South-west Greenland: a quantitative approach

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

The intertidal communities on rocky shores are directly subjected to climatic changes in air and water temperatures and to derived effects of climate change, such as changes in freshwater run-off and ice dynamics. Global warming occurs at elevated rates in Greenland and results in changing species distributions with range expansions to the north and new species entering terrestrial habitats from the south. There is, however, no quantitative knowledge of past or present species distribution in the littoral zone of Southern Greenland, an area which represents an important gateway for northern range expansions of temperate species. This study provides baseline information on abundances of macroorganisms in the eulittoral Southern Greenland. This knowledge will pave the way for future studies on the impact of climate change and anthropogenic activities on these communities. Nine sites, situated at different exposure levels, were investigated. A total of 22 taxa were recorded, suggesting low species richness. Patellid limpets and predators such as dogwhelks, starfish and crabs were absent. Total standing stock ranged from 0 to 31,898 g m−2. Species composition and biomasses were related to locally generated wave exposure, oceanic swells and ice scouring. The high standing stock at sheltered sites indicated that neither light, temperature nor nutrients, constrained buildup of biomass in this environment. Inshore seasonal measurements of water and air temperatures were recorded for the first time in the region, displaying low water temperatures and high variation in air temperatures, indicating lack of insulating stable sea ice in the area. Possible impacts of ongoing temperature changes are discussed based on recorded temperatures and meteorological data from the past 30 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ballantine WJ (1961) A biologically defined exposure scale for the comparative description of rocky shores. Field Stud J 1:1–19

    Google Scholar 

  • Barry JP, Baxter CH, Sagarin RD, Gilman SE (1995) Climate-related, long-term faunal changes in a California rocky intertidal community. Science 267:672–675

    Article  PubMed  CAS  Google Scholar 

  • Bell EC, Denny MW (1994) Quantifying wave exposure—a simple device for recording maximum velocity and results of its use at several field sites. J Exp Mar Biol Ecol 181:9–29

    Article  Google Scholar 

  • Berge J, Johnsen G, Nilsen F, Gulliksen B, Slagstad D (2005) Ocean temperature oscillations enable reappearance of blue mussels Mytilus edulis in Svalbard after a 1000 year absence. Mar Ecol Prog Ser 303:167–175

    Article  Google Scholar 

  • Bertness MD, Gaines SD, Hay ME (2001) Marine community ecology. Sinauer Associates Inc, Massachusetts

    Google Scholar 

  • Beuchel F, Gulliksen B, Carroll ML (2006) Long-term patterns of rocky bottom macrobenthic community structure in an Arctic fjord (Kongsfjorden, Svalbard) in relation to climate variability (1980–2003). J Marine Syst 63:35–48

    Article  Google Scholar 

  • Blanchette CA, Miner CM, Raimondi PT, Lohse D, Heady KEK, Broitman BR (2008) Biogeographical patterns of rocky intertidal communities along the Pacific coast of North America. J Biogeogr 35:1593–1607

    Article  Google Scholar 

  • Blicher ME, Sejr MK, Høgslund S (2013) Population structure of Mytilus edulis in the intertidal zone in a subarctic fjord, SW Greenland. Mar Ecol Prog Ser 487:89–100

    Article  Google Scholar 

  • Broitman BR, Mieszkowska N, Helmuth B, Blanchette CA (2008) Climate and recruitment of rocky shore intertidal invertebrates in the eastern north Atlantic. Ecology 89:81–90

    Article  Google Scholar 

  • Buch E (2002) Present oceanographic conditions in Greenland waters. Danish Meteorological Institute, Copenhagen

    Google Scholar 

  • Christensen T (1981) Havbundens planter. In: Böcher TW, Nielsen CO, Schou A (eds) Danmarks Natur, Book 10. Politikens Forlag, Copenhagen, pp 184–192

    Google Scholar 

  • Connell JH (1972) Community interactions on marine rocky intertidal shores. Annu Rev Ecol Sys 3:169–192

    Article  Google Scholar 

  • Coyer JA, Hoarau G, Skage M, Stam WT, Olsen JL (2006) Origin of Fucus serratus (Heterokontophyta; Fucaceae) populations in Iceland and the Faroes: a microsatellite-based assessment. Euro J Phycol 41:235–246

    Article  Google Scholar 

  • Davenport J, Davenport JL (2005) Effects of shore height, wave exposure and geographical distance on thermal niche width of intertidal fauna. Mar Ecol Prog Ser 292:41–50

    Article  Google Scholar 

  • Espinosa F, Guerra-Garcia JM (2005) Algae, macrofaunal assemblages and temperature: a quantitative approach to intertidal ecosystems of Iceland. Helgoland Mar Res 59:273–285

    Article  Google Scholar 

  • Florczyk I, Latala A (1989) The phytobenthos of the Hornsund fjord, SW Spitsbergen. Polar Res 7:29–41

    Article  Google Scholar 

  • Fonseca MS, Malhotra A (2010) WEMo: wave exposure model for use in ecological forecasting 4.0. Center for coastal fisheries and habitat research, North Carolina

  • Fonseca M, Whitfield PE, Kelly NM, Bell SS (2002) Modeling seagrass landscape pattern and associated ecological attributes. Ecol Appl 12:218–237

    Article  Google Scholar 

  • Fredriksen S, Kile MR (2012) The algal vegetation in the outer part of Isfjorden, Spitsbergen: revisiting Per Svendsen’s sites 50 years later. Polar Res. doi:10.3402/polar.v31i0.17538

    Google Scholar 

  • Hanna E, Jonsson T, Olafsson J, Valdimarsson H (2006) Icelandic coastal sea surface temperature records constructed: putting the pulse on air-sea-climate interactions in the northern North Atlantic. Part I: Comparison with HadISST1 open-ocean surface temperatures and preliminary analysis of long-term patterns and anomalies of SSTs around Iceland. J Clim 19:5652–5666

    Article  Google Scholar 

  • Hansen L (1999) The intertidal macrofauna and macroalgae at five Arctic localities (Disko, West Greenland). In: Brandt A, Thomsen HA, Heide-Jørgensen MP, Kristensen RM, Ruhberg H (eds) The 1998 Daish-German excursion to Disko Islands. Alfred Wegener Institut für Polar und Meeresforschung, Bremerhaven, West Greenland, pp 92–109

    Google Scholar 

  • Harley CDG (2011) Climate change, keystone predation, and biodiversity loss. Science 334:1124–1127

    Article  PubMed  CAS  Google Scholar 

  • Hawkins SJ, Moore PJ, Burrows MT, Poloczanska E, Mieszkowska N, Herbert RJH, Jenkins SR, Thompson RC, Genner MJ, Southward AJ (2008) Complex interactions in a rapidly changing world: responses of rocky shore communities to recent climate change. Clim Res 37:123–133

    Article  Google Scholar 

  • Hawkins SJ, Sugden HE, Mieszkowska N, Moore PJ, Poloczanska E, Leaper R, Herbert RJH, Genner MJ, Moschella PS, Thompson RC, Jenkins SR, Southward AJ, Burrows MT (2009) Consequences of climate-driven biodiversity changes for ecosystem functioning of North European rocky shores. Mar Ecol Prog Ser 396:245–259

    Article  Google Scholar 

  • Hayward PJ, Ryland JS (1995) Handbook of the Marine Fauna of North-West Europe. Oxford University Press, Oxford

    Google Scholar 

  • Herbert RJH, Southward AJ, Sheader M, Hawkins SJ (2007) Influence of recruitment and temperature on distribution of intertidal barnacles in the English Channel. J Mar Biol Assoc UK 87:487–499

    Article  Google Scholar 

  • Ingolfsson A, Hawkins SJ (2008) Slow recovery from disturbance: a 20 year study of Ascophyllum canopy clearances. J Mar Biol Assoc UK 88:689–691

    Article  Google Scholar 

  • Jenkins SR, Moore P, Burrows MT, Garbary DJ, Hawkins SJ, Ingolfsson A, Sebens KP, Snelgrove PVR, Wethey DS, Woodin SA (2008) Comparative ecology of north Atlantic shores: do differences in players matter for process? Ecology 89:3–23

    Article  Google Scholar 

  • Jensen A (1949) Concerning a change of climate during recent decades in the Arctic and Subarctic regions, from Greenland in the west to Eurasia in the east, and contemporary biological and geophysical changes. Book 14 (8). Det Kgl. Danske Videnskabernes Selskab, Copenhagen

  • Johannesson K, Ekendahl A (2002) Selective predation favouring cryptic individuals of marine snails (Littorina). Biol J Linn Soc 76:137–144

    Article  Google Scholar 

  • Jones SJ, Mieszkowska N, Wethey DS (2009) Linking thermal tolerances and biogeography: mytilus edulis (L.) at its southern limit on the east coast of the United States. Biol Bull 217:73–85

    PubMed  Google Scholar 

  • Jones SJ, Lima FP, Wethey DS (2010) Rising environmental temperatures and biogeography: poleward range contraction of the blue mussel, Mytilus edulis L., in the western Atlantic. J Biogeogr 37:2243–2259

    Article  Google Scholar 

  • Jueterbock A, Tyberghein L, Verbruggen H, Coyer JA, Olsen JL, Hoarau G (2013) Climate change impact on seaweed meadow distribution in the North Atlantic rocky intertidal. Ecol Evol 3:1356–1373

    Article  PubMed  PubMed Central  Google Scholar 

  • Juul-Pedersen T, Arendt EK, Mortensen J, Rysgaard S, Søgaard HD, Retzel A, Nygaard R, Burmeister AD, Sejr MK, Blicher ME, Krause-Jensen D, Marna N, Merzouk A, Labansen AL, Geertz-Hansen O, Boye T, Simon M (2013) Nuuk Basic, the marine basic programe 2010. In: Jensen LM, Rasch M (eds) Nuuk ecological research operations, 6th annual report, 2012. Aarhus University, DCE, Aarhus, pp 47–67

    Google Scholar 

  • Karez R, Chapman ARO (1998) A competitive hierarchy model integrating roles of physiological competence and competitive ability does not provide a mechanistic explanation for the zonation of three intertidal Fucus species in Europe. Oikos 81:471–494

    Article  Google Scholar 

  • Keddy PA (1982) Quantifying within-lake gradients of wave energy—interrelationships of wave energy, substrate particle-size and shoreline plants in Axe Lake, Ontario. Aquat Bot 14:41–58

    Article  Google Scholar 

  • Konar B, Iken K, Edwards M (2009) Depth-stratified community zonation patterns on Gulf of Alaska rocky shores. Mar Ecol Evol Persp 30:63–73

    Article  Google Scholar 

  • Kordas RL, Harley CDG, O’Connor MI (2011) Community ecology in a warming world: the influence of temperature on interspecific interactions in marine systems. J Exp Mar Biol Ecol 400:218–226

    Article  Google Scholar 

  • Leonard GH (2000) Latitudinal variation in species interactions: a test in the New England rocky intertidal zone. Ecology 81:1015–1030

    Article  Google Scholar 

  • Little CG, Williams GA, Trowbridge CD (2009) The biology of rocky shores. Oxford University Press Inc., Oxford

    Google Scholar 

  • Lobban CS, Harrison PJ (1994) Seaweed ecology and physiology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lüning K (1990) Seaweeds. Their environment, biogeography, and ecophysiology. Wiley, New York

    Google Scholar 

  • Menge BA (1976) Organization of the New England rocky intertidal community: role of predation, competition, and environmental heterogeneity. Ecol Monogr 46:355–393

    Article  Google Scholar 

  • Mieszkowska N, Kendall MA, Hawkins SJ, Leaper R, Williamson P, Hardman-Mountford NJ, Southward AJ (2006) Changes in the range of some common rocky shore species in Britain—a response to climate change? Hydrobiologia 555:241–251

    Article  Google Scholar 

  • Mieszkowska N, Hawkins SJ, Burrows MT, Kendall MA (2007) Long-term changes in the geographic distribution and population structures of Osilinus lineatus (Gastropoda : Trochidae) in Britain and Ireland. J Mar Biol Assoc UK 87:537–545

    Article  Google Scholar 

  • Moore GWK, Pickart RS, Renfrew IA (2008) Buoy observations from the windiest location in the world ocean. Geophys Res Lett, Cape Farewell. doi:10.1029/2008GL034845

    Google Scholar 

  • Müller R, Laepple T, Barsch I, Wiencke C (2009) Impact of oceanic warming on the distribution of seaweeds in polar and cold-temperate waters. Bot Mar 52:617–638

    Article  Google Scholar 

  • Oksanen J, Guillaume BF, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Henry M, Stevens H, Wagner H (2013) Vegan: Community ecology package. R package version 2.0-7. http://CRAN.R-project.org/package=vegan. Accessed 18 Mar 2013

  • Olsen JL, Zechman FW, Hoarau G, Coyer JA, Stam WT, Valero M, Aberg P (2010) The phylogeographic architecture of the fucoid seaweed Ascophyllum nodosum: an intertidal ‘marine tree’ and survivor of more than one glacial-interglacial cycle. J Biogeogr 37:842–856

    Article  Google Scholar 

  • Paine RT (1994) Marine rocky shores and community ecology: an experimentalist’s perspective. Ecology Institute, Oldendorf/Luhe

    Google Scholar 

  • Pedersen PM (2011) Grønlands havalger. Epsilon, Copenhagen

    Google Scholar 

  • R Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org/. Accessed 18 Mar 2013

  • Ribergaard MH (2013) Oceanographic investigations off west Greenland 2012. NAFO Scientific Council Documents, Copenhagen

    Google Scholar 

  • Rosenvinge LKR (1893) Grønlands havalger. Meddel Grønland 3:765–981

    Google Scholar 

  • Rueness J (1977) Norsk Algeflora. Universitetsforlaget, Oslo

    Google Scholar 

  • Sagarin RD, Barry JP, Gilman SE, Baxter CH (1999) Climate-related change in an intertidal community over short and long time scales. Ecol Monogr 69:465–490

    Article  Google Scholar 

  • Schonbeck MW, Norton TA (1980) Factors controlling the lower limits of fucoid algae on the shore. J Exp Mar Biol Ecol 43:131–150

    Article  Google Scholar 

  • Scrosati R, Eckersley LK (2007) Thermal insulation of the intertidal zone by the ice foot. J Sea Res 58:331–334

    Article  Google Scholar 

  • Scrosati R, Heaven C (2007) Spatial trends in community richness, diversity, and evenness across rocky intertidal environmental stress gradients in eastern Canada. Mar Ecol Prog Series 342:1–14

    Article  Google Scholar 

  • Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (2007) Climate change 2007: the physical science basis. Working Group I, contribution to the fourth assessment report of the IPCC Intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • Svendsen P (1959) The algal vegetation of Spitsbergen. Norsk polarinst skr 116:1–51

    Google Scholar 

  • Ugland KI, Gray JS, Ellingsen KE (2003) The species-accumulation curve and estimation of species richness. J Anim Ecol. doi:10.1046/j.1365-2656.2003.00748.x

    Google Scholar 

  • Vesteegh EAA, Blicher ME, Mortensen J, Rysgaard S, Als TD, Wanamaker AD (2012) Oxygen isotope ratios in the shell of Mytilus edulis: archives of glacier meltwater in Greenland? Biogeosciences 9:5231–5241

    Article  Google Scholar 

  • Węsławski JM, Wiktor J Jr, Zajaczkowski M, Futsaeter G, Moe KA (1997) Vulnerability assessment of Svalbard intertidal zone for oil spills. Estuar Coast Shelf Sci 44:33–41

    Article  Google Scholar 

  • Węsławski JM, Wiktor J Jr, Kotwicki L (2010) Increase in biodiversity in the Arctic rocky littoral, Sorkappland, Svalbard, after 20 years of climate warming. Mar Biodiv 40:123–130

    Article  Google Scholar 

  • Węsławski JM, Kendall MA, Włodarska-Kowalczuk M, Iken K, Kędra M, Legezynska J, Sejr MK (2011) Climate change effects on Arctic fjord and coastal macrobenthic diversity—observations and predictions. Mar Biodiv 41:71–85

    Article  Google Scholar 

  • Wickham H (2007) Reshaping data with the reshape package. J Stat Softw 21:1–20

    Google Scholar 

  • Wulff A, Iken K, Quartino ML, Al-Handal A, Wiencke C, Clayton MN (2009) Biodiversity, biogeography and zonation of marine benthic micro-and macroalgae in the Arctic and Antarctic. Bot Mar 52:491–507

    Article  Google Scholar 

  • Zacherl D, Gaines SD, Lonhart SI (2003) The limits to biogeographical distributions: insights from the northward range extension of the marine snail, Kelletia kelletii (Forbes, 1852). J Biogeogr 30:913–924

    Article  Google Scholar 

  • Zippay ML, Helmuth B (2012) Effects of temperature change on mussel, Mytilus. Integr Zool 7:312–327

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Jens Deding, Poul Møller Pedersen and Tom Djurhuus for skillful assistance with fieldwork and logistics. We thank Palle Bo Nielsen from the Danish Meterological Institute (DMI) for providing tide model data. The study was funded by the Danish Environmental Protection Agency (grant no. 112-00115), the Bureau of Minerals and Petroleum, Greenland Government, the Greenland Climate Research Center, the Danish Ministry of the Environment (DANCEA), the Ministry of Education, Research and Nordic Cooperation (IIN), Aage V. Jensens Charity Foundation, and is a part of the Arctic Science Partnership (http://asp-net.org).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Signe Høgslund.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Høgslund, S., Sejr, M.K., Wiktor, J. et al. Intertidal community composition along rocky shores in South-west Greenland: a quantitative approach. Polar Biol 37, 1549–1561 (2014). https://doi.org/10.1007/s00300-014-1541-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-014-1541-7

Keywords

Navigation