Skip to main content

Advertisement

Log in

Testate amoebae and environmental features of polygon tundra in the Indigirka lowland (East Siberia)

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Polygon tundra characterizes large areas of arctic lowlands. The micro-relief pattern within polygons offers differentiated habitats for testate amoeba (testacean) communities. The objective of this study was to relate testacean species distribution within a polygon to the environmental setting. Therefore, testaceans from four cryosol pits dug at different locations within a low-centered polygon were studied in the context of pedological and pedochemical data, while ground temperature and ground moisture were measured over one summer season. The study site is located on the Berelekh River floodplain (Indigirka lowland, East Siberia). The environmental data sets reflect variations along the rim-to-center transect of the polygon and in different horizons of each pit. The testacean species distribution is mainly controlled by the soil moisture regime and pH. Most of the identified testaceans are cosmopolitans; eight species are described from an arctic environment for the first time. Differences in environmental conditions are controlled by the micro-relief of polygon tundra and must be considered in arctic lowland testacean research because they bias species composition and any further (paleo-)ecological interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andreev A, Grosse G, Schirrmeister L, Kuznetsova T, Kuzmina S, Bobrov A, Tarasov P, Novenko E, Meyer H, Derevyagin A, Kienast F, Bryantseva A, Kunitsky V (2009) Weichselian and Holocene palaeoenvironmental history of the Bol’shoy Lyakhovsky Island, New Siberian Archipelago, Arctic Siberia. Boreas 38:72–110. doi:10.1111/j.1502-3885.2008.00039.x

    Article  Google Scholar 

  • Beyens L, Chardez D (1995) An annotated list of testate amoebae observed in the Arctic between the longitudes 27° E and 168° W. Arch Protistenkd 146:219–233. doi:10.1016/S0003-9365(11)80114-4

    Article  Google Scholar 

  • Beyens L, Chardez D, Baere D, with collaboration of de Bock P (1992) The testate amoebae from the Søndre Strømfjord region (West-Greenland): their biogeographic implications. Arch Protistenkd 142:5–13. doi:10.1016/S0003-9365(11)80092-8

    Google Scholar 

  • Beyens L, Chardez D, de Baere D, with collaboration of de Bock P, Jacques E (1990) Ecology of terrestrial testate amoebae assemblages from coastal lowlands on Devon Island (NWT, Canadian Arctic). Polar Biol 10:431–440. doi:10.1007/BF00233691

    Google Scholar 

  • Beyens L, Chardez D, de Landtsheer R, with collaboration of de Baere D (1986a) Testate amoebae communities from aquatic habitats in the Arctic. Polar Biol 6:197–205. doi:10.1007/BF00443396

    Google Scholar 

  • Beyens L, Chardez D, de Landtsheer R, with collaboration of de Bock P, Jacques E (1986b) Testate amoebae populations from moss and lichen habitats in the Arctic. Polar Biol 5:165–173. doi:10.1007/BF00441696

    Google Scholar 

  • CAVM Team (2003) Circumpolar Arctic vegetation map. Conservation of Arctic Flora and Fauna (CAFF) Map No. 1. US Fish and Wildlife Service, Anchorage, Alaska

  • Beyens L, Chardez D, van de Vijver BA (2000) Contribution to the protist-diversity in the polar regions: testate amoebae data from the Russian Arctic. In: Ceulemans R, Bogaert J, Deckmyn G, Nijs I (eds) Topics in ecology. Structure and function in plants and ecosystems. University of Antwerpen, UIA, Wilrijk, pp 101–110

    Google Scholar 

  • Beyens L, Ledeganck P, Graae BJ, Nijs I (2009) Are soil biota buffered against climatic extremes? An experimental test on testate amoebae in arctic tundra (Qeqertarsuaq, West Greenland). Polar Biol 32:453–462. doi:10.1007/s00300-008-0540-y

    Article  Google Scholar 

  • Bobrov AA, Charman DJ, Warner BG (1999) Ecology of testate amoebae (Protozoa: Rhizopoda) on peatlands in Western Russia with special attention to niche separation in closely related taxa. Protist 150:125–136. doi:10.1016/S1434-4610(99)70016-7

    Article  PubMed  CAS  Google Scholar 

  • Bobrov AA, Andreev AA, Schirrmeister L, Siegert C (2004) Testate amoebae (Protozoa: Testacealobosea and Testaceafilosea) as bioindicators in the late quaternary deposits of the Bykovsky Peninsula, Laptev Sea, Russia. Palaeogeogr Palaeoclimatol Palaeoecol 209:165–181. doi:10.1016/j.palaeo.2004.02.012

    Article  Google Scholar 

  • Bobrov A, Müller S, Chizhikova N, Schirrmeister L, Andreev A (2009) Testate amoebae in late quaternary sediments of the Cape Mamontov Klyk (Yakutia). Biol Bull 36:363–372. doi:10.1134/S1062359009040074

    Article  Google Scholar 

  • Bowman RA, Cole CV (1978) An exploration method for fractionation of organic phosphorus from grassland soils. Soil Sci 125:95–101

    Article  CAS  Google Scholar 

  • Chapin FS III, Barsdate RJ, Barèl D (1978) Phosphorus cycling in Alaskan coastal tundra: a hypothesis for the regulation of nutrient cycling. Oikos 31:189–199

    Article  CAS  Google Scholar 

  • Chardez D (1965) Ecologie générale des Thécamoebiens. Bull Inst Agron Stn Rech Gembloux 33:307–341

    Google Scholar 

  • Charman DJ (1997) Modelling hydrological relationships of testate amoebae (Protozoa: Rhizopoda) on New Zealand peatlands. J R Soc N Z 27:465–483. doi:10.1080/03014223.1997.9517549

    Article  Google Scholar 

  • Charman DJ (2001) Biostratigraphic and palaeoenvironmental applications of testate amoebae. Quat Sci Rev 20:1753–1764. doi:10.1016/S0277-3791(01)00036-1

    Article  Google Scholar 

  • Charman DJ, Blundell A, Members A (2007) A new European testate amoebae transfer function for palaeohydrological reconstruction on ombrotrophic peatlands. J Quat Sci 22:209–221. doi:10.1002/jqs.1026

    Article  Google Scholar 

  • DIN (1996) DIN ISO 10694. Soil quality—determination of organic and total carbon after dry combustion (elementary analysis). Beuth, Berlin

  • Fiedler S, Wagner D, Kutzbach L, Pfeiffer E-M (2004) Element redistribution along hydraulic and redox gradients of low-centered polygons, Lena Delta, Northern Siberia. Soil Sci Soc Am J 68:1002–1011. doi:10.2136/sssaj2004.1002

    Article  CAS  Google Scholar 

  • Geocryological Map (1991) Geocryological Map of the USSR, scale 1:2,500,000. Yershov ED (ed) Moscow State University, Faculty of Geology, Department of Geocryology (in Russian)

  • Gilbert D, Amblard C, Bourdier G, Francez AJ (1998) The microbial loop at the surface of a peatland: structure, function, and impact of nutrient input. Microb Ecol 35:83–93. doi:10.1007/s002489900062

    Article  PubMed  CAS  Google Scholar 

  • Ivanoff DB, Reddy KR, Robinson S (1998) Chemical fractionation of organic phosphorus in selected histosols. Soil Sci 163:36–45

    Article  CAS  Google Scholar 

  • Lamarre A, Garneau M, Asnong H (2012) Holocene paleohydrological reconstruction and carbon accumulation of a permafrost peatland using testate amoeba and macrofossil analyses, Kuujjuarapik, subarctic Québec, Canada. Rev Palaeobot Palynol 186:131–141. doi:10.1016/j.revpalbo.2012.04.009

    Article  Google Scholar 

  • Markel E, Booth RK, Qin Y (2010) Testate amoebae and δ13C of Sphagnum as surface moisture proxies in Alaskan peatlands. Holocene 20:463–475. doi:10.1177/0959683609354303

    Article  Google Scholar 

  • Mattheeussen R, Ledeganck P, Vincke S, van de Vijver B, Nijs I, Beyens L (2005) Habitat selection of aquatic testate amoebae communities on Qeqertarsuaq (Disko Island), West Greenland. Acta Protozool 44:253–263

    Google Scholar 

  • Meyer H, Schirrmeister L, Andreev A, Wagner D, Hubberten H-W, Yoshikawa K, Bobrov A, Wetterich S, Opel T, Kandiano E, Brown J (2010) Late Glacial and Holocene isotopic and environmental history of Northern Alaska—results from a buried ice-wedge system at Barrow. Quat Sci Rev 29:3720–3735. doi:10.1016/j.quascirev.2010.08.005

    Article  Google Scholar 

  • Mitchell EAD, Gilbert D (2004) Vertical micro-distribution and response to nitrogen deposition of testate amoebae in Sphagnum. J Eukaryot Microbiol 51:480–490. doi:10.1111/j.1550-7408.2004.tb00400.x

    Article  PubMed  Google Scholar 

  • Mitchell EAD, Charman DJ, Warner BG (2008) Testate amoebae analysis in ecological and paleoecological studies of wetlands: past, present and future. Biodivers Conserv 17:2115–2137. doi:10.1007/s10531-007-9221-3

    Article  Google Scholar 

  • Müller S, Bobrov A, Schirrmeister L, Andreev A, Tarasov PE (2009) Testate amoebae record from the Laptev Sea coast and its implication for the reconstruction of Late Pleistocene and Holocene environments in the Arctic Siberia. Palaeogeogr Palaeoclimatol Palaeoecol 271:301–315. doi:10.1016/j.palaeo.2008.11.003

    Article  Google Scholar 

  • Oksanen J, Kindt R, Legendre P, O’Hara B, Simpson GL, Solymos P, Stevens MHH, Wagner H (2008) Vegan: community ecology package. R package version 1.15-1

  • Payne RJ, Kishaba K, Blackford JJ, Mitchell EAD (2006) Ecology of testate amoebae (Protista) in south-central Alaska peatlands: building transfer-function models for palaeoenvironmental studies. Holocene 16:403–414. doi:10.1191/0959683606hl936rp

    Article  Google Scholar 

  • Payne RJ, Mitchell EAD, Nguyen-Viet H, Gilbert D (2012) Can pollution bias peatland paleoclimate reconstruction? Quat Res 78:170–173. doi:10.1016/j.yqres.2012.05.004

    Article  CAS  Google Scholar 

  • Pitulko VV (2011) The Berelekh quest: a review of forty years of research in the mammoth graveyard in northeast Siberia. Geoarchaeol 26:5–32. doi:10.1002/gea.20342

    Article  Google Scholar 

  • R Development Core Team (2008) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Reichelt G, Willmanns O (1973) Vegetationsgeographie. G. Westermann, Braunschweig

    Google Scholar 

  • Rivas-Martínez S (1996-2009) Climate diagrams. Worldwide bioclimatic classification system. Phytosociological Research Center, Spain, online source: www.globalbioclimatics.org. Assessed 01 March 2011

  • Schirrmeister L, Grosse G, Schnelle M, Fuchs M, Ulrich M, Kunitsky V, Grigoriev M, Andreev A, Kienast F, Meyer H, Babiy O, Klimova I, Bobrov A, Wetterich S, Schwamborn G (2011) Late quaternary paleoenvironmental records from the western Lena Delta, Arctic Siberia. Palaeogeogr Palaeoclimatol Palaeoecol 299:175–196. doi:10.1016/j.palaeo.2010.10.045

    Article  Google Scholar 

  • Schirrmeister L, Pestryakova L, Wetterich S, Tumskoy V (2012) Joint Russian-German polygon project: East Siberia 2011–2014. The expedition Kytalyk 2011. Ber Polarforsch Meeresforsch 653:1–153

    Google Scholar 

  • Shishov LL, Tonkonogov VD, Lebedeva II, Gerasimova MI (2004) Classification and diagnostics of soils of Russia. Oecumene, Moscow (in Russian)

    Google Scholar 

  • Soil Survey Staff (2010) Keys to soil taxonomy, 10th edn. US Department of Agriculture & Natural Resources Conservation Service, Washington

    Google Scholar 

  • Trappeniers K, van Kerckvoord A, Chardez D, Nijs I, Beyens L (1999) Ecology of testate amoebae communities from aquatic habitats in the Zackenberg area (Northeast Greenland). Polar Biol 22:271–278. doi:10.1007/s003000050420

    Article  Google Scholar 

  • Tsyganov AN, Nijs I, Beyens L (2011) Does climate warming stimulate or inhibit soil protist communities? A test on testate amoebae in high-arctic tundra with free-air temperature increase. Protist 162:237–248. doi:10.1016/j.protis.2010.04.006

    Article  PubMed  Google Scholar 

  • Tsyganov AN, Aerts R, Nijs I, Cornelissen JHC, Beyens L (2012) Sphagnum-dwelling testate amoebae in subarctic bogs are more sensitive to soil warming in the growing season than in winter: the results of eight-year field climate manipulations. Protist 163:400–414. doi:10.1016/j.protis.2011.07.005

    Article  PubMed  Google Scholar 

  • VDLUFA (1991) Methodenbuch 1. Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten, Darmstadt

    Google Scholar 

  • Vincke S, Van de Vijver B, Nijs I, Beyens L (2006) Changes in the testacean community structure along small soil profiles. Acta Protozool 45:395–406

    Google Scholar 

  • Weintraub MN, Schimel JP (2005) The seasonal dynamics of amino acids and other nutrients in Alaskan Arctic tundra soils. Biogeochem 73:359–380. doi:10.1007/sl0533-004-0363-z

    Article  CAS  Google Scholar 

  • Wetterich S, Grosse G, Schirrmeister L, Andreev AA, Bobrov AA, Kienast F, Bigelow NH, Edwards ME (2012) Late quaternary environmental and landscape dynamics revealed by a pingo sequence on the northern Seward Peninsula, Alaska. Quat Sci Rev 39:26–44. doi:10.1016/j.quascirev.2012.01.027

    Article  Google Scholar 

  • Wilkinson DM, Mitchell EAD (2010) Testate amoebae and nutrient cycling with particular reference to soils. Geomicrobiol J 27:520–533. doi:10.1080/01490451003702925

    Article  Google Scholar 

Download references

Acknowledgments

The study was conducted under the auspices of the joint Russian–German project “Polygons in tundra wetlands: State and dynamics under climate variability in polar regions” (Russian Foundation for Basic Research, RFBR Grant No. 11-04-91332-NNIO-a, Deutsche Forschungsgemeinschaft, DFG Grant No. HE 3622-16-1). Financial support came also from the RFBR Project No. 11-04-01171-a “Geography and ecology of soil-inhabiting testate amoebae”. Our field studies in Kytalyk were realized in coordination with Dutch groups from the Vrije Universiteit Amsterdam (led by Ko van Huissteden) and the University of Wageningen (led by Monique Heijmans). Finally, we would like to thank the Committee of Nature Conservation in Chokurdakh (Evgeny Yanyigin, Tatyana Gavrilova) for logistical support. The manuscript preparation and revision greatly benefited by valuable comments and English language correction from Candace O’Connor (University of Alaska, Fairbanks).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Wetterich.

Electronic supplementary material

Below is the link to the electronic supplementary material.

300_2013_1311_MOESM1_ESM.tif

Fig. S1 Studied soil pits of the KYT-1 polygon site: pit 1 – top of the polygon rim; pit 2 – inner slope of the polygon rim; pit 3 – polygon center; pit 4—polygon center (TIFF 16,342 kb)

Table S2 Pedochemical data from polygon KYT-1. The abbreviation n.a. stands for not analyzed (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bobrov, A.A., Wetterich, S., Beermann, F. et al. Testate amoebae and environmental features of polygon tundra in the Indigirka lowland (East Siberia). Polar Biol 36, 857–870 (2013). https://doi.org/10.1007/s00300-013-1311-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-013-1311-y

Keywords

Navigation