Skip to main content

Advertisement

Log in

Are soil biota buffered against climatic extremes? An experimental test on testate amoebae in arctic tundra (Qeqertarsuaq, West Greenland)

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Climate warming is likely to have pronounced impacts on soil biota in arctic ecosystems. In a warmer climate, heatwaves are more frequent and intense, but it is unclear to what extent soil communities are buffered against this. We studied the effects of an artificially induced heatwave on the structure of testate amoebae communities in dry heath tundra in Qeqertarsuaq (Disko Island, West Greenland) during the summer of 2003. While the heatwave was severe enough to induce significant leaf mortality in the aboveground vegetation, overall testate amoebae abundance did not react to the difference in temperature. However, in the heated plots transient shifts in species populations occurred during the exposure, followed by increases in species richness weeks after the heatwave had ended. The most important taxa appearing after the heating period belonged to bacterivorous genera, in agreement with a transient peak in bacterial colony forming units, caused by the heatwave. Lobose testate amoebae resisted the heating and its associated desiccation better than their filose counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aleksandrova V (1980) The Arctic and Antarctic: their division in geobotanical areas. Cambridge University Press, Cambridge

    Google Scholar 

  • Alexander LV, Zhang X, Peterson TC et al (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res 111(D5):D05109

    Article  Google Scholar 

  • Aristovskaya TV, Parinkina OM (1972) Preliminary results of the IBP studies of soil microbiology in tundra. In: Wielgolaski FE, Rosswall TH (eds) Tundra biome. Proceedings of the 4th international meeting on the biological productivity of tundra, Leningrad, pp 80–92

  • Beyens L, Meisterfeld R (2001) Protozoa: testate amoebae. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments. Terrestrial, algal, and siliceous indicators, vol 3. Kluwer Academic Publishers, Dordrecht, pp 121–153

    Chapter  Google Scholar 

  • Bobrov A, Charman DJ, Warner BG (1999) Ecology of testate amoebae (Protozoa: Rhizopoda) on peatlands in Western Russia with special attention to niche separation in closely related taxa. Protist 150:125–136

    Article  PubMed  CAS  Google Scholar 

  • Bonkowski M (2004) Protozoa and plant growth: the microbial loop in soil revisited. New Phytol 162:617–631

    Article  Google Scholar 

  • Bonnet L (1976) Le Peuplement thécamoebien édaphique de la Côte-d’Ivoire. Sols de la région de Lamto. Protistologica 12:539–554

    Google Scholar 

  • Booth RK (2002) Testate amoebae as paleoindicators of surface-moisture changes on Michigan peatlands: modern ecology and hydrological calibration. J Paleolimnol 28:329–348

    Article  Google Scholar 

  • Corbet SA (1973) An illustrated introduction to the testate rhizopods in Sphagnum, with special reference to the area around Malham Tarn, Yorkshire. Field Stud 3(5):801–838

    Google Scholar 

  • Coulson SJ, Hodkinson ID, Webb NR, Block W, Bale JS, Strathdee AT, Worland MR, Wooley C (1996) Effects of experimental temperature elevation on high-arctic soil microarthropod populations. Polar Biol 16:147–153

    Article  Google Scholar 

  • Decloitre L (1962) Le genre Euglypha Dujardin. Arch Protistenkunde 106:51–100

    Google Scholar 

  • Decloitre L (1978) Le genre Centropyxis I Compléments à jour au 31 décembre 1974 de la monographie du genre parue en 1929. Arch Protistenkunde 120:63–85

    Google Scholar 

  • Decloitre L (1981) Le genre Trinema Dujardin, 1841. Révision à jour au 31.12.1979. Arch Protistenkunde 124:193–218

    Google Scholar 

  • Deflandre G (1928) Le genre Arcella Ehrenberg. Arch Protistenkunde 64:152–288

    Google Scholar 

  • Deflandre G (1929) Le genre Centropyxis Stein. Arch Protistenkunde 67:322–375

    Google Scholar 

  • Deflandre G (1936) Etude monographique sur le genre Nebela Leidy (Rhizopoda, Testacea). Ann Protistol 5:201–327

    Google Scholar 

  • Grospietsch T (1964) Die Gattungen Cryptodifflugia und Difflugiella (Rhizopoda, Testacea). Zool Anz 172:243–257

    Google Scholar 

  • Grospietsch T (1965) Monographische Studie der Gattung Hyalosphenia Stein (Rhizopoda, Testacea). Hydrobiologia 26:211–241

    Article  Google Scholar 

  • Hansen BU, Elberling B, Humlum O, Nielsen N (2006) Meteorological trends (1991–2004) at the Arctic Station, Central West Greenland (69°15′N) in a 130 years perspective. Danish J Geogr 106:45–55

    Google Scholar 

  • Heal OW (1962) The abundance and micro-distribution of testate amoebae (Rhizopoda: Testacea) in Sphagnum. Oikos 13:35–47

    Article  Google Scholar 

  • Heal OW (1964) Observations on the seasonal and spatial distribution of Testacea (Protozoa: Rhizopoda) in Sphagnum. J Anim Ecol 33:395–412

    Article  Google Scholar 

  • Hoogenraad HR, de Groot AA (1940) Zoetwaterrhizopoden en heliozoën. In: Fauna van Nederland, Aflevering 9. A.W. Sijthoff, Leiden, pp 1–303

    Google Scholar 

  • IPCC (2007) Summary for policy makers. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jones MH, Fahnestock JT, Walker DA, Walker MD, Welker JM (1998) Carbon dioxide fluxes in moist and dry arctic tundra during the snow-free season: responses to increases in summer temperature and winter snow accumulation. Arct Alp Res 30:373–380

    Article  Google Scholar 

  • Laminger HSR (1984) Einfluss der Ernährung auf die Enzystierung und Exzystierung von Testacea (Protozoa, Rhizopoda). Pedobiologia 27:241–244

    Google Scholar 

  • Laybourn J, Whymant L (1980) The effect of diet and temperature on reproductive rate in Arcella vulgaris Ehrenberg (Sarcodina: Testacida). Oecologia 45:282–284

    Article  Google Scholar 

  • Lousier JD (1974) Response of soil testacea to soil moisture fluctuations. Soil Biol Biochem 6:235–239

    Article  Google Scholar 

  • Marchand FL, Mertens S, Kockelbergh F, Beyens L, Nijs I (2005) Performance of High Arctic tundra plants improved during but deteriorated after a simulated extreme temperature event. Glob Chang Biol 11:2078–2089

    Article  Google Scholar 

  • Marchand FL, Verlinden M, Kockelbergh F, Graae BJ, Beyens L, Nijs I (2006) Disentangling effects of an experimentally imposed extreme temperature event and naturally associated desiccation on Arctic tundra. Funct Ecol 20:917–928

    Article  Google Scholar 

  • Meisterfeld R (2000a) Order Arcellinida, Kent, 1880. In: Lee JJ, Leedale GF, Bradbury P (eds) The illustrated guide to the protozoa. Society of Protozoologists, Lawrence, pp 827–860

    Google Scholar 

  • Meisterfeld R (2000b) Testate amoebae with filopodia. In: Lee JJ, Leedale GF, Bradbury P (eds) The illustrated guide to the protozoa. Society of Protozoologists, Lawrence, pp 1054–1084

    Google Scholar 

  • Nadelhoffer KJ, Giblin AE, Shaver GR, Laundre JA (1991) Effects of temperature and substrate quality on element mineralization in six arctic soils. Ecology 72:242–253

    Article  Google Scholar 

  • Nadelhoffer KJ, Giblin AE, Shaver GR, Linkins AE (1992) Microbial processes and plant nutrient availability in Arctic soils. In: Chapin FSIII, Jefferies RL, Reynolds JF, Shaver GR, Svoboda J (eds) Arctic ecosystems in a changing climate. Academic, San Diego, pp 281–300

    Google Scholar 

  • Nielsen N, Humlum O, Hansen BU (2001) Meteorological observations in 2000 at the Arctic Station, Qeqertersuaq (69°15′N), Central West Greenland. Danish J Geogr 101:155–158

    Google Scholar 

  • Nijs I, Kockelbergh F, Teughels H, Blum H, Hendrey G, Impens I (1996) Free air temperature increase (FATI): a new tool to study global warming effects on plants in the field. Plant Cell Environ 19:495–502

    Article  Google Scholar 

  • Nijssen D, Rousseau R, Van Hecke P (1998) The Lorentz curve: a graphical presentation of evenness. Coenoses 13:33–38

    Google Scholar 

  • Norris TB, Wraith JM, Castenholz RW, McDermott TR (2002) Soil microbial community structure across a thermal gradient following a geothermal heating event. Appl Environ Microbiol 68:6300–6309

    Article  PubMed  CAS  Google Scholar 

  • Oechel WC, Billings WD (1992) Effects of global change on the carbon balance of arctic plants and ecosystems. In: Chapin FSIII, Jefferies RL, Reynolds JF, Shaver GR, Svoboda J (eds) Arctic ecosystems in a changing climate: an ecophysiological perspective. Academic, San Diego, pp 139–168

    Google Scholar 

  • Oechel WC, Hastings SJ, Vourlitis GL, Jenkins M, Riechers G, Grulke N (1993) Recent change of the arctic tundra ecosystems from a net carbon dioxide sink to a source. Nature 361:520–523

    Article  Google Scholar 

  • Oechel WC, Vourlitis GL, Hastings SJ (1997) Cold season CO2 emission from arctic soils. Global Biogeochem Cycles 11:172

    Article  Google Scholar 

  • Ogden CG (1983) Observations on the systematics of the genus Difflugia in Britain (Rhizopoda, Protozoa). Bull Br Mus Nat Hist (Zool) 44:73

    Google Scholar 

  • Ogden C, Hedley R (1980) An atlas of freshwater testate amoebae. British Museum (Natural History). Oxford University Press, London

    Google Scholar 

  • Page FC (1988) A new key to freshwater and soil gymnamoebae. Freshwater Biological Association, Ambleside

    Google Scholar 

  • Patrick R (1971) The effects of increasing light and temperature on the structure of diatom communities. Limnol Oceanogr 16:405–421

    Article  Google Scholar 

  • Ronn R, McCaig AE, Griffiths BS, Prosser JI (2002) Impact of protozoan grazing on bacterial community structure in soil microcosms. Appl Environ Microbiol 68(12):6094–6105

    Article  PubMed  CAS  Google Scholar 

  • Rummukainen M, Raisanen J, Bjorge D, Christensen OB, Christensen JH, Iversen T, Jylha K, Olafsson H, Tuomenvirta H (2003) Regional climate scenarios for use in Nordic water resources studies. Nord Hydrol 34:399–412

    Google Scholar 

  • Schönborn W (1986) Population dynamics and production biology of testate amoebae (Rhizopoda, Testacea) in raw humus of two coniferous forest soils. Arch Protistenkunde 132:325–342

    Google Scholar 

  • Schönborn W (1992) Comparative studies on the production biology of protozoan communities in freshwater and soil ecosystems. Arch Protistenkunde 141:187–214

    Google Scholar 

  • Shannon C, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Urbana

    Google Scholar 

  • Sohlenius B, Bostrom S (1999) Effects of global warming on nematode diversity in a Swedish tundra soil—a soil transplantation experiment. Nematology 1:695–709

    Article  Google Scholar 

  • Stevenson AC, Juggins S, Birks HJB, Anderson DS, Anderson NJ, Batterbee RW, Berge F, Davis RB, Flower RJ, Haworth EY, Jones VJ, Kingston JC, Kreiser AM, Line JM, Munro MAR, Renberg I (1991) The surface water acidification project paleo-limnology programme: modern diatom/lake water chemistry data set. Ensis, London

    Google Scholar 

  • Stockmarr J (1971) Tablets with spores used in absolute pollen analysis. Pollen Spores 13:615–621

    Google Scholar 

  • Thomas R (1958) Le genre Plagiopyxis Penard. Hydrobiologia 10:198–214

    Article  Google Scholar 

  • Trappeniers K, Van Kerckvoorde A, Chardez D, Nijs I, Beyens L (2002) Testate amoebae assemblages from soils in the Zackenberg area, Northeast Greenland. Arct Antarct Alp Res 34:94–101

    Article  Google Scholar 

  • Van Kerckvoorde A, Trappeniers K, Chardez D, Nijs I, Beyens L (2000) Testate amoebae communities from moss habitats in the Zackenberg area (North-East Greenland). Acta Protozool 39:27–33

    Google Scholar 

  • Wolters V, Silver WL, Bignell DE, Coleman DC, Lavelle P, van der Putten WH, de Ruiter PC, Rusek J, Wall DH, Wardle DA, Brussaard L, Dangerfield JM, Brown VK, Giller KE, Hooper DU, Sala OE, Tiedje JM, van Veen JA (2004) Effects of global changes on above- and belowground biodiversity in terrestrial ecosystems: implications for ecosystem functioning. BioScience 50:1089–1098

    Article  Google Scholar 

  • Yeates GW, Foissner W (1995) Testate amoebae as predators of nematodes. Biol Fertil Soils 20:1–7

    Article  Google Scholar 

Download references

Acknowledgments

We thank the University of Copenhagen for providing access to, and logistics at, the Arctic Station located on Disko Island, Greenland. This study was supported by the Fund for Scientific Research, Flanders (FWO, Belgium) under contract G.0357.02, and also by a grant to BJG by The National Science Foundation Denmark under contract 21-02-0515.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Beyens.

Appendix: List of observed taxa, with abbreviations used in the figures

Appendix: List of observed taxa, with abbreviations used in the figures

Arcella arenaria

ARCARE

Assulina muscorum

ASSMUS

Centropyxis aerophila

CENAER

Centropyxis cassis

CENCAS

Centropyxis constricta

CENCON

Centropyxis laevigata

CENLAE

Centropyxis minuta

CENMIN

Centropyxis orbicularis

CENORB

Centropyxis platystoma

CENPLA

Centropyxis sp2

CENSP2

Corythion dubium

CORDUB

Corythion pulchellum

CORPUL

Cryptodifflugia compressa

CRYCOM

Cyclopyxis eurystoma

CYCEUR

Cyclopyxis kahli

CYCKAH

Cyclopyxis sp1

CYCSP1

Cyclopyxis sp2

CYCSP2

Difflugia globulus

DIFGLO

Difflugia pristis

DIFPRI

Difflugia pulex

DIFPUL

Difflugia sp1

DIFSP1

Difflugia tenuis

DIFTEN

Difflugiella oviformis

DILOVI

Difflugiella sacculus

DILSAC

Difflugiella vanhoornii

DILVAN

Euglypha ciliata

EUGCIL

Euglypha ciliata glabra

EUGCIG

Euglypha compressa

EUGCOM

Euglypha compressa f. glabra

EUGCOG

Euglypha cristata

EUGCRI

Euglypha cristata var. decora

EUGCRD

Euglypha dolioliformis

EUGDOL

Euglypha laevis

EUGLAE

Euglypha polylepis

EUGPOL

Euglypha rotunda

EUGROT

Euglypha rotunda var. minima

EUGROM

Euglypha sp2

EUGSP2

Euglypha sp4

EUGSP4

Euglypha sp9

EUGSP9

Euglypha strigosa

EUGSTR

Euglypha strigosa f. glabra

EUGSTG

Euglypha tuberculata

EUGTUB

Heleopera petricola

HELPET

Heleopera sylvatica

HELSYL

Heleopera sp2

HELSP2

Microchlamys patella

MICPAT

Nebela collaris

NEBCOL

Nebela dentistoma

NEBDEN

Nebela lageniformis

NEBLAG

Nebela penardiana

NEBPEN

Nebela wailesii

NEBWAI

Phryganella haemispherica

PHRHAE

Plagiopyxis callida

PLACAL

Plagiopyxis declivis

PLADEC

Tracheleuglypha dentata

TRADEN

Tracheleuglypha sp2

TRASP2

Trachelocorythion pulchellum

TRAPUL

Trinema complanatum

TRICOM

Trinema enchelys

TRIENC

Trinema grandis

TRIGRA

Trinema lineare

TRILIN

Trinema penardii

TRIPEN

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beyens, L., Ledeganck, P., Graae, B.J. et al. Are soil biota buffered against climatic extremes? An experimental test on testate amoebae in arctic tundra (Qeqertarsuaq, West Greenland). Polar Biol 32, 453–462 (2009). https://doi.org/10.1007/s00300-008-0540-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-008-0540-y

Keywords

Navigation