Skip to main content
Log in

An intact plastid genome is essential for the survival of colorless Euglena longa but not Euglena gracilis

  • Original Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Euglena gracilis growth with antibacterial agents leads to bleaching, permanent plastid gene loss. Colorless Euglena (Astasia) longa resembles a bleached E. gracilis. To evaluate the role of bleaching in E. longa evolution, the effect of streptomycin, a plastid protein synthesis inhibitor, and ofloxacin, a plastid DNA gyrase inhibitor, on E. gracilis and E. longa growth and plastid DNA content were compared. E. gracilis growth was unaffected by streptomycin and ofloxacin. Quantitative PCR analyses revealed a time dependent loss of plastid genes in E. gracilis demonstrating that bleaching agents produce plastid gene deletions without affecting cell growth. Streptomycin and ofloxacin inhibited E. longa growth indicating that it requires plastid genes to survive. This suggests that evolutionary divergence of E. longa from E. gracilis was triggered by the loss of a cytoplasmic metabolic activity also occurring in the plastid. Plastid metabolism has become obligatory for E. longa cell growth. A process termed “intermittent bleaching”, short term exposure to subsaturating concentrations of reversible bleaching agents followed by growth in the absence of a bleaching agent, is proposed as the molecular mechanism for E. longa plastid genome reduction. Various non-photosynthetic lineages could have independently arisen from their photosynthetic ancestors via a similar process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

SM:

Streptomycin

OF:

Ofloxacin

References

  • Abrahamsen MS, Templeton TJ, Enomoto S et al (2004) Complete genome sequence of the apicomplexan, Cryptosporidium parvum. Science 16:441–445

    Article  Google Scholar 

  • Adl SM, Simpson AGB, Lane CE et al (2012) The revised classification of eukaryotes. J Eukaryot Microbiol 59:429–493

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmadinejad N, Dagan T, Martin W (2007) Genome history in the symbiotic hybrid Euglena gracilis. Gene 402:35–39

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Archibald JM (2008) Plastid evolution: remnant algal genes in ciliates. Curr Biol 18:R663–R665

    Article  CAS  PubMed  Google Scholar 

  • Archibald JM (2015) Genomic perspectives on the birth and spread of plastids. Proc Nat Acad Sci 112:10147–10153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett MS, Triemer RE (2015) Chloroplast genome evolution in the Euglenaceae. J Eukaryot Microbiol 62:773–785

    Article  CAS  PubMed  Google Scholar 

  • Bicudo CEdM, Menezes M (2016) Phylogeny and classification of Euglenophyceae: a brief review. Front Ecol Evol 4:17

    Article  Google Scholar 

  • Blum JJ, Sommer JR, Kahn V (1965) Some biochemical, cytological, and morphogenetic comparisons between Astasia longa and a bleached Euglena gracilis. J Protozool 12:202–209

    Article  CAS  PubMed  Google Scholar 

  • Bodył A (1996) Is the origin of Astasia longa an example of the inheritance of acquired characteristics? Acta Protozool 35:87–94

    Google Scholar 

  • Bodył A, Stiller JW, Mackiewicz P (2009) Chromalveolate plastids: direct descent or multiple endosymbioses? Trends Ecol Evol 24:119–121 (author reply 121–122)

    Article  PubMed  Google Scholar 

  • Buetow DE, Padilla GM (1963) Growth of Astasia longa on ethanol. I. Effects of ethanol on generation time, population density and biochemical profile. J Protozool 10:121–123

    Article  CAS  PubMed  Google Scholar 

  • Burki F, Shalchian-Tabrizi K, Pawlowski J (2008) Phylogenomics reveals a new ‘megagroup’ including most photosynthetic eukaryotes. Biol Lett 4:366–369

    Article  PubMed  PubMed Central  Google Scholar 

  • Burki F, Okamoto N, Pombert JF, Keeling PJ (2012) The evolutionary history of haptophytes and cryptophytes: phylogenomic evidence for separate origins. Proc Biol Sci 279:2246–2254

    Article  PubMed  PubMed Central  Google Scholar 

  • Burki F, Kaplan M, Tikhonenkov DV et al (2016) Untangling the early diversification of eukaryotes: a phylogenomic study of the evolutionary origins of Centrohelida, Haptophyta and Cryptista. Proc R Soc B 283:20152802

    Article  PubMed  PubMed Central  Google Scholar 

  • Charan M, Singh N, Kumar B, Srivastava K, Siddiqi MI, Habib S (2014) Sulfur mobilization for Fe–S cluster assembly by the essential SUF pathway in the Plasmodium falciparum apicoplast and its inhibition. Antimicrob Agents Chemother 58:3389–3398

    Article  PubMed  PubMed Central  Google Scholar 

  • Cramer M, Myers J (1952) Growth and photosynthetic characteristics of Euglena gracilis. Arch Mikrobiol 17:384–403

    Article  CAS  Google Scholar 

  • Diamond J, Schiff JA (1974) Isolation and Characterization of mutants of Euglena resistant to streptomycin. Plant Sci Lett 3:289–295

    Article  CAS  Google Scholar 

  • Figueroa-Martinez F, Nedelescu AM, Smith DR, Reyes-Prieto A (2015) When the lights go out: the evolutionary fate of free-living colorless green algae. New Phytol 206:972–982

    Article  PubMed  PubMed Central  Google Scholar 

  • Finn RD, Coggill P, Eberhardt RY et al (2016) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 44(D1):D279–D285

    Article  PubMed  Google Scholar 

  • Geimer S, Belicová A, Legen J, Sláviková S, Herrmann RG, Krajčovič J (2009) Transcriptome analysis of the Euglena gracilis plastid chromosome. Curr Genet 55:425–438

    Article  CAS  PubMed  Google Scholar 

  • George B, Bhatt BS, Awasthi M, George B, Singh AK (2015) Comparative analysis of microsatellites in chloroplast genomes of lower and higher plants. Curr Genet 61:665–677

    Article  CAS  PubMed  Google Scholar 

  • Gockel G, Hachtel W (2000) Complete gene map of the plastid genome of the nonphotosynthetic euglenoid flagellate Astasia longa. Protist 151:347–351

    Article  CAS  PubMed  Google Scholar 

  • Gockel G, Hachtel W, Baier S, Fliss C, Henke M (1994) Genes for chloroplast apparatus are conserved in the reduced 73-kb plastid DNA of the nonphotosynthetic euglenoid flagellate Astasia longa. Curr Genet 26:256–262

    Article  CAS  PubMed  Google Scholar 

  • Hallick RB, Hong L, Drager RG et al (1993) Complete sequence of Euglena gracilis chloroplast DNA. Nucleic Acids Res 21:3537–3544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heizmann P, Hussein Y, Nicolas P, Nigon V (1982) Modifications of chloroplast DNA during streptomycin induced mutagenesis in Euglena gracilis. Curr Genet 5:9–15

    Article  CAS  PubMed  Google Scholar 

  • Hrdá Š, Fousek J, Szabová J, Hampl V, Vlček Č (2012) The plastid genome of Eutreptiella provides a window into the process of secondary endosymbiosis of plastid in Euglenids. PLoS One 7(3):e33746. doi:10.1371/journal.pone.0033746

    Article  PubMed  PubMed Central  Google Scholar 

  • Hussein Y, Heizmann P, Nicolas P, Nigon V (1982) Quantitative estimation of chloroplast DNA in bleached mutants of Euglena gracilis. Curr Genet 6:111–117

    Article  CAS  PubMed  Google Scholar 

  • Janouškovec J, Horák A, Oborník M, Lukeš J, Keeling PJ (2010) A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids. Proc Natl Acad Sci USA 107:10949–10954

    Article  PubMed  PubMed Central  Google Scholar 

  • Janouškovec J, Tikhonenkov DV, Burki F, Howe AT, Kolísko M, Mylnikov AP, Keeling PJ (2015) Factors mediating plastid dependency and the origin of parasitism in apicomplexans and their close relatives. Proc Natl Acad Sci USA 112:10200–10207

    Article  PubMed  PubMed Central  Google Scholar 

  • Karnkowska A, Bennett MS, Watza D, Kim JI, Zakryś B, Triemer RE (2015) Phylogenetic relationships and morphological character evolution of photosynthetic euglenids (Excavata) inferred from taxon-rich analyses of five genes. J Eukaryot Microbiol 62:362–373

    Article  CAS  PubMed  Google Scholar 

  • Karnkowska A, Vacek V, Zubáčová Z et al (2016) A eukaryote without a mitochondrial organelle. Curr Biol 26:1274–1284

    Article  CAS  PubMed  Google Scholar 

  • Kim E, Graham LE (2008) EEF2 analysis challenges the monophyly of Archaeplastida and Chromalveolata. PLoS One 3:e2621

    Article  PubMed  PubMed Central  Google Scholar 

  • Kořený L, Oborník M (2011) Sequence evidence for the presence of two tetrapyrrole pathways in Euglena gracilis. Genome Biol Evol 3:359–364

    Article  PubMed  Google Scholar 

  • Krajčovič J, Ebringer L, Polónyi J (1989) Quinolones and coumarins eliminate chloroplasts from Euglena gracilis. Antimicrob Agents Chemother 33:1883–1889

    Article  PubMed  PubMed Central  Google Scholar 

  • Krajčovič J, Ebringer L, Schwartzbach SD (2002) Reversion of endosymbiosis? In: Seckbach J (ed) Symbiosis: mechanisms and models. Cellular origin in extreme habitats, vol 4. Kluwer Acad Pub, Dordrecht, pp 185–206

    Google Scholar 

  • Krause K (2008) From chloroplasts to “cryptic” plastids: evolution of plastid genomes in parasitic plants. Curr Genet 54:111–121

    Article  CAS  PubMed  Google Scholar 

  • Krnáčová K, Vinarčíková M, Rýdlová I, Krajčovič J, Vesteg M, Horváth A (2015) Characterization of oxidative phosphorylation enzymes in Euglena gracilis and its white mutant strain W gm ZOflL. FEBS Lett 589:687–694

    Article  PubMed  Google Scholar 

  • Larionov A, Krause A, Miller W (2005) A standard curve based method for relative real time PCR data processing. BMC Bioinform 6:62

    Article  Google Scholar 

  • Marin B, Palm A, Klingberg M, Melkonian M (2003) Phylogeny and taxonomic revision of plastid-containing euglenophytes based on SSU rDNA sequence comparison and synapomorphic signatures in the SSU rRNA secondary structure. Protist 154:99–145

    Article  CAS  PubMed  Google Scholar 

  • Milanowski R, Karnkowska A, Ishikawa T, Zakryś B (2014) Distribution of conventional and nonconventional introns in Tubulin (α and β) genes of euglenids. Mol Biol Evol 31:584–593

    Article  CAS  PubMed  Google Scholar 

  • Molina J, Hazzouri KM, Nickrent D et al (2014) Possible loss of the chloroplast genome in the parasitic flowering plant Rafflesia lagascae (Rafflesiaceae). Mol Biol Evol 31:793–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Neill EC, Trick M, Henrissat B, Field RA (2015a) Euglena in time: evolution, control of central metabolic processes and multi-domain proteins in carbohydrate and natural product biochemistry. Perspect Sci 6:84–93

    Article  Google Scholar 

  • O’Neill EC, Trick M, Hill L et al (2015b) The transcriptome of Euglena gracilis reveals unexpected metabolic capabilities for carbohydrate and natural product biochemistry. Mol BioSyst 11:2808–2820

    Article  PubMed  Google Scholar 

  • Oldenburg DJ, Bendich AJ (2016) The linear plastid chromosomes of maize: terminal sequences, structures, and implications for DNA replication. Curr Genet 62:431–442

    Article  CAS  PubMed  Google Scholar 

  • Osafune T, Schiff JA (1983) W10BSmL, a mutant of Euglena gracilis var. bacillaris lacking plastids. Exp Cell Res 148:530–535

    Article  CAS  PubMed  Google Scholar 

  • Parfrey LW, Lahr DJG, Knoll AH, Katz LA (2011) Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc Natl Acad Sci USA 108:13624–13629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polónyi J, Ebringer L, Dobias J, Krajčovič J (1998) Giant mitochondria in chloroplast-deprived Euglena gracilis late after N-succinimidylofloxacin treatment. Folia Microbiol 43:661–666

    Article  Google Scholar 

  • Ralph SA, van Dooren GG, Waller RF et al (2004) Tropical infectious diseases: metabolic maps and functions of the Plasmodium falciparum apicoplast. Nat Rev Microbiol 2:203–216

    Article  CAS  PubMed  Google Scholar 

  • Rawson JRY, Boerma C (1976) Infuence of growth condition upon the number of chloroplast DNA molecules in Euglena gracilis. Proc Natl Acad Sci USA 73:2401–2404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers TD, Scholes VE, Schlichting HE (1972) An ultrastructural comparison of Euglena gracilis Klebs, bleached Euglena and Astasia longa Pringsheim. J Protozool 19:133–139

    Article  CAS  PubMed  Google Scholar 

  • Rogers MB, Gilson PR, Su V, McFadden GI, Keeling PJ (2007) The complete chloroplast genome of the chlorarachniophyte Bigelowiella natans: evidence for independent origins of chlorarachniophyte and euglenid secondary endosymbionts. Mol Biol Evol 24:54–62

    Article  CAS  PubMed  Google Scholar 

  • Schiff JA, Schwartzbach SD, Osafune T, Hase E (1991) Photocontrol and processing of LHCPII apoprotein in Euglena: possible role of Golgi and other cytoplasmic sites. J Photochem Photobiol B: Biol 11:219–236

    Article  CAS  Google Scholar 

  • Schwartzbach SD, Schiff JA (1974) Chloroplast and cytoplasmic ribosomes of Euglena: binding of dihydrostreptomycin to chloroplast ribosomes. J Bacteriol 120:334–341

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schwender J, Goffman F, Ohlrogge JB, Shachar-Hill Y (2004) Rubisco without the Calvin cycle improves the carbon efficiency of developing green seeds. Nature 432:779–782

    Article  CAS  PubMed  Google Scholar 

  • Sheveleva EV, Giordani NV, Hallick RB (2002) Identification and comparative analysis of the chloroplast α-subunit of DNA-dependent RNA-polymerase from seven Euglena species. Nucleic Acids Res 30:1247–1254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sievers F, Wilm A, Dineen D et al (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539

    Article  PubMed  PubMed Central  Google Scholar 

  • Sláviková S, Vacula R, Fang Z, Ehara T, Osafune T, Schwartzbach SD (2005) Homologous and heterologous reconstitution of Golgi to chloroplast transport and protein import into the complex chloroplasts of Euglena. J Cell Sci 118:1651–1661

    Article  PubMed  Google Scholar 

  • Smith DR, Lee RW (2014) A plastid without a genome: evidence from the nonphotosynthetic green algal genus Polytomella. Plant Physiol 164:1812–1819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stiller JW (2014) Toward an empirical framework for interpreting plastid evolution. J Phycol 50:462–471

    Article  PubMed  Google Scholar 

  • Templeton TJ, Enomoto S, Chen W-J, Huang C-G, Lancto CA, Abrahamsen MS, Zhu G (2010) A genome-sequence survey for Ascogregarina taiwanensis supports evolutionary affiliation but metabolic diversity between a gregarine and Cryptosporidium. Mol Biol Evol 27:235–248

    Article  CAS  PubMed  Google Scholar 

  • Toso MA, Omoto CK (2007) Gregarine niphandrodesmay lack both a plastid genome and organelle. J Eukaryot Microbiol 54:66–72

    Article  CAS  PubMed  Google Scholar 

  • Triemer RE, Linton E, Shin W et al (2006) Phylogeny of the Euglenales based upon combined SSU and LSU rDNA sequence comparisons and description of Discoplastis Gen. nov. (Euglenophyta). J Phycol 42:731–740

    Article  Google Scholar 

  • Turmel M, Gagnon MC, O’kelly CJ, Otis C, Lemieux C (2009) The chloroplast genomes of the green algae Pyramimonas, Monomastix, and Pycnococcus shed new light on the evolutionary history of prasinophytes and the origin of the secondary chloroplasts of euglenids. Mol Biol Evol 26:631–648

    Article  CAS  PubMed  Google Scholar 

  • Vacula R, Steiner JM, Krajčovič J, Ebringer L, Löffelhardt W (1999) Nucleus-encoded precursors to thylakoid lumen proteins of Euglena gracilis possess tripartite presequences. DNA Res 6:45–49

    Article  CAS  PubMed  Google Scholar 

  • Vesteg M, Vacula R, Krajčovič J (2009a) On the origin of chloroplasts, import mechanisms of chloroplast-targeted proteins, and loss of photosynthetic ability—review. Folia Microbiol 54:303–321

    Article  CAS  Google Scholar 

  • Vesteg M, Vacula R, Burey S, Löffelhardt W, Drahovská H, Martin W, Krajčovič J (2009b) Expression of nucleus-encoded genes for chloroplast proteins in the flagellate Euglena gracilis. J Eukaryot Microbiol 56:159–166

    Article  CAS  PubMed  Google Scholar 

  • Vesteg M, Vacula R, Steiner JM, Mateášiková B, Löffelhardt W, Brejová B, Krajčovič J (2010) A possible role for short introns in the acquisition of stroma-targeting peptides in the flagellate Euglena gracilis. DNA Res 17:223–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang JX, Shi ZX, Xu XD (2004) Residual plastids of bleached mutants of Euglena gracilis and their effects on the expression of nucleus-encoded genes. Prog Nat Sci 14:213–217

    Article  CAS  Google Scholar 

  • Yoshida Y, Tomiyama T, Maruta T, Tomita M, Ishikawa T, Arakawa K (2016) De novo assembly and comparative transcriptome analysis of Euglena gracilis in response to anaerobic conditions. BMC Genom 17:1

    Article  Google Scholar 

  • Záhonová K, Hadariová L, Vacula R, Yurchenko V, Eliáš M, Krajčovič J, Vesteg M (2014) A small portion of plastid transcripts is polyadenylated in the flagellate Euglena gracilis. FEBS Lett 588:783–788

    Article  PubMed  Google Scholar 

  • Záhonová K, Füssy Z, Eliáš M, Oborník M, Yurchenko V (2016) Rubisco in nonphotosynthetic alga Euglena longa—divergent features, transcriptomic analysis and regulation of complex formation. PLoS One 11:e0158790

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu G, Marchewka MJ, Keithly JS (2000) Cryptosporidium parvum appears to lack plastid genome. Microbiology 146:315–321

    Article  CAS  PubMed  Google Scholar 

  • Zimorski V, Ku C, Martin WF, Gould SB (2014) Endosymbiotic theory for organelle origins. Curr Opin Microbiol 22C:38–48

    Article  Google Scholar 

Download references

Acknowledgments

Culture of Euglena (Astasia) longa was a kind gift of Prof. W. Hachtel (Bonn, Germany). We also thank to Dr. Martina Neboháčová (Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava) for help with quantitative PCR. This work was supported by National Science Foundation grant MCB-0080345 to S. D. S. and Grants VEGA 1/0416/09, 1/0626/13 and NSF/MCB9630817/2000 from the Ministry of Education of the Slovak Republic to J. K. and it is the result of the projects ITMS 26240120027 and ITMS 26210120024 supported by the Research & Development Operational Programme funded by the ERDF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juraj Krajčovič.

Additional information

Communicated by M. Kupiec.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 45 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadariová, L., Vesteg, M., Birčák, E. et al. An intact plastid genome is essential for the survival of colorless Euglena longa but not Euglena gracilis . Curr Genet 63, 331–341 (2017). https://doi.org/10.1007/s00294-016-0641-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-016-0641-z

Keywords

Navigation