Skip to main content
Log in

On the origin of chloroplasts, import mechanisms of chloroplast-targeted proteins, and loss of photosynthetic ability — review

  • Review
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Primary plastids of green algae (including land plants), red algae and glaucophytes are bounded by two membranes and are thought to be derived from a single primary endosymbiosis of a cyanobacterium in a eukaryotic host. Complex plastids of euglenids and chlorarachneans bounded by three and four membranes, respectively, most likely arose via two separate secondary endosymbioses of a green alga in a eukaryotic host. Secondary plastids of cryptophyta, haptophyta, heterokontophyta and apicomplexan parasites bounded by four membranes, and plastids of dinoflagellates bounded by three membranes could have arisen via a single secondary endosymbiosis of a red alga in a eukaryotic host (chromalveolate hypothesis). However, the scenario of separate tertiary origins (symbioses of an alga possessing secondary plastids in a eukaryotic host) of some (or even most) chromalveolate plastids can be also consistent with the current data. The protein import into complex plastids differs from the import into primary plastids, as complex plastids contain one or two extra membrane(s). In organisms with primary plastids, plastid-targeted proteins contain N-terminal transit peptide which ferries proteins through the protein import machineries (multiprotein complexes) of the two (originally cyanobacterial) membranes. In organisms with complex plastids, the secretory signal sequence directing proteins to endomembrane system and afterwards through extra outermost membrane(s) is generally present upstream of the classical transit peptide. Several free-living as well as parasitic eukaryotes possess non-photosynthetic plastids. These plastids have generally retained the plastid genome, functional plastid transcriptional and translational apparatus, and various metabolic pathways, suggesting that though these plastids lost their photosynthetic ability, they are essential for the mentioned organisms. Nevertheless, some eukaryotes could have lost chloroplast compartment completely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ER:

endoplasmic reticulum

ERAD:

ER-associated degradation

FBA:

fructose-1,6-bisphosphate aldolase

GAPDH:

glyceraldehyde-3-phosphate dehydrogenase

PRK:

phosphoribulokinase

rbcL:

gene encoding large subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase

rpl36:

chloroplast gene encoding ribosomal protein L36

Rubisco SSU:

small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase

Toc:

translocon of the chloroplast outer membrane

Tic:

translocon of the chloroplast inner membrane

References

  • Ahmadinejad N., Dagan T., Martin W.: Genome history in the symbiotic hybrid Euglena gracilis. Gene 402, 35–39 (2007).

    CAS  PubMed  Google Scholar 

  • Andersson J.O., Roger A.J.: A cyanobacterial gene in nonphotosynthetic protists — an early chloroplast acquisition in eukaryotes? Curr.Biol. 12, 115–119 (2002).

    CAS  PubMed  Google Scholar 

  • Archibald J.M.: Plastid evolution: remnant algal genes in ciliates. Curr.Biol. 18, R663–R665 (2008).

    CAS  PubMed  Google Scholar 

  • Archibald J.M., Keeling P.J.: Recycled plastids: a green movement in eukaryotic evolution. Trends Genet. 18, 577–584 (2002).

    CAS  PubMed  Google Scholar 

  • Archibald J.M., Longet D., Pawlowski J., Keeling P.J.: A novel polyubiquitin structure in Cercozoa and Foraminifera: evidence for a new eukaryotic supergroup. Mol.Biol.Evol. 20, 62–66 (2002).

    Google Scholar 

  • Archibald J.M., Rogers M.B., Toop M., Ishida K., Keeling P.J.: Lateral gene transfer and the evolution of plastid-targeted proteins in the secondary plastid-containing alga Bigelowiella natans. Proc.Nat.Acad.Sci.USA 100, 7678–7683 (2003).

    CAS  PubMed  Google Scholar 

  • Barbrook A.C., Howe C.J., Purton S.: Why are plastid genomes retained in non-photosynthetic organisms. Trends Plant Sci. 11, 101–108 (2006).

    CAS  PubMed  Google Scholar 

  • Bass D., Moreira D., López-García P., Polet S., Chao E.E., VON DER Heyden S., Pawlowski J., Cavalier-Smith T.: Polyubiquitin insertions and the phylogeny of Cercozoa and Rhizaria. Protist 156, 149–161 (2005).

    CAS  PubMed  Google Scholar 

  • Becker B., Hoef-Emden K., Melkonian M.: Chlamydial genes shed light on the evolution of photoautotrophic eukaryotes. BMC Evol.Biol. 8, 203 (2008).

    PubMed  Google Scholar 

  • Bhattacharya D., Nosenko T.: Endosymbiotic and horizontal gene transfer in chromalveolates. J.Phycol. 44, 7–10 (2008).

    CAS  Google Scholar 

  • Bhattacharya D., Archibald J.M., Weber A.P.M., Reyes-prieto A.: How do endosymbionts become organelles? Understanding early events in plastid evolution. BioEssays 29, 1239–1246 (2007).

    CAS  PubMed  Google Scholar 

  • Bodył A.: Do plastid related characters support the chromalveolate hypothesis? J.Phycol. 41, 712–719 (2005).

    Google Scholar 

  • Bodył A., Moszczyński K.: Did peridinin plastids evolve through tertiary endosymbiosis? A hypothesis. Eur.J.Phycol. 41, 435–448 (2006).

    Google Scholar 

  • Boore J.L.: Detecting evolutionary transfer of genes using PhIGs. J.Phycol. 44, 19–22 (2008).

    CAS  Google Scholar 

  • Borza T., Popescu C.E., Lee R.W.: Multiply metabolic roles for the non-photosynthetic plastid of the green alga Prototheca wickerhamii. Eukaryot.Cell 4, 253–261 (2005).

    CAS  PubMed  Google Scholar 

  • Braun E.L., Phillips N.: Phylogenomics and secondary plastids: a look back and look ahead. J.Phycol. 44, 2–6 (2008).

    Google Scholar 

  • Bungard R.A.: Photosynthetic evolution in parasitic plants: insight from the chloroplast genome. BioEssays 26, 235–247 (2004).

    CAS  PubMed  Google Scholar 

  • Burki F., Shalchian-Tabrizi K., Minge M., Skjæveland Å., Nikolaev S.I., Jakobsen K.S., Pawlowski J.: Phylogenomics reshuffles the eukaryotic supergroups. PLoS ONE 2, e790 (2007).

    PubMed  Google Scholar 

  • Caliebe A., Soll J.: News in chloroplast import. Plant Mol.Biol. 39, 641–645 (1999).

    CAS  PubMed  Google Scholar 

  • Cavalier-Smith T.: The evolution of prokaryotic and eukaryotic cells, pp. 217–272 in G.E. Bittar (Ed.): Fundamentals of Medical Cell Biology, Vol. 1. JAI Press, Greenwich 1991.

    Google Scholar 

  • Cavalier-Smith T.: Kingdom Protozoa and its 18 phyla. Microbiol.Rev. 57, 953–994 (1993).

    CAS  PubMed  Google Scholar 

  • Cavalier-Smith T.: Principles of protein and lipid targeting in secondary symbiosis: euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. J.Eukaryot.Microbiol. 46, 347–366 (1999).

    CAS  PubMed  Google Scholar 

  • Cavalier-Smith T.: Membrane heredity and early chloroplast evolution. Trends Plant Sci. 5, 174–182 (2000).

    CAS  PubMed  Google Scholar 

  • Cavalier-Smith T.: The phagotrophic origin of eukaryotes and the phylogenetic classification of Protozoa. Internat.J.Syst.Evol. Microbiol. 52, 297–354 (2002).

    CAS  Google Scholar 

  • Cavalier-Smith T.: Genomic reduction and evolution of novel genetic membranes and protein-targeting machinery in eukaryote-eukaryote chimaeras (meta-algae). Phil.Trans.Roy.Soc.London B 358, 109–134 (2003).

    CAS  PubMed  Google Scholar 

  • Chen X., Schnell D.J.: Protein import into chloroplasts. Trends Cell Biol. 9, 222–227 (1999).

    CAS  PubMed  Google Scholar 

  • Christensen T.: The Chromophyta, past and present, pp. 1–12 in J.C. Green, B.C.S. Leadbeater, W.C. Diver (Eds): The Chromophyte Algae: Problems and Perspectives. Oxford University Press, Oxford 1989.

    Google Scholar 

  • Cline K., Henri R.: Import and routing of nucleus-encoded chloroplast protein. Ann.Rev.Cell Dev.Biol. 12, 1–26 (1997).

    Google Scholar 

  • Deschamps P., Colleoni C., Nakamura Y., Suzuki E., Putaux J.-L., Buléon A., Haebel S., Ritte G., Steup M., Falcón L.I., Moreira D., Löffelhardt W., Raj J.N., Plancke C., D’hulst C., Dauvillée D., Ball S.: Metabolic symbiosis and the birth of the plant kingdom. Mol.Biol.Evol. 25, 536–548 (2008).

    CAS  PubMed  Google Scholar 

  • Deusch O., Landan G., Roettger M., Kowallik K.V., Allen J.F., Martin W., Dagan T.: Genes of cyanobacterial origin in plant nuclear genomes point to heterocyst-forming plastid ancestor. Mol.Biol.Evol. 25, 748–761 (2008).

    CAS  PubMed  Google Scholar 

  • Van Dooren G.G., Schwartzbach S.D., Osafune T., Mcfadden G.I.: Translocation of proteins across the multiple membranes of complex plastids. Biochim.Biophys.Acta 1541, 34–53 (2001).

    PubMed  Google Scholar 

  • Douglas S.E.: Plastid evolution: origins, diversity, trends. Curr.Opin.Genet.Dev. 8, 655–661 (1998).

    CAS  PubMed  Google Scholar 

  • Douglas S.E., Zauner S., Fraunholz M., Beaton M.J., Penny S., Deng L.-T., Wu X., Reith M., Cavalier-smith T., Maier U.-G.: The highly reduced genome of an enslaved algal nucleus. Nature 410, 1081–1086 (2001).

    Google Scholar 

  • Durnford D.G., Gray M.W.: Analysis of Euglena gracilis plastid-targeted proteins reveals different classes of transit sequences. Eukaryot.Cell 5, 2079–2091 (2006).

    CAS  PubMed  Google Scholar 

  • Elbrächter M., Schnepf E.: Gymnodinium chlorophorum, a new green, bloom-forming dinoflagellate (Gymnodiniales, Dinophyceae) with a vestigial prasinophyte endosymbiont. Phycologia 35, 381–393 (1996).

    Google Scholar 

  • Falkowski P.G., Katz M.E., Knoll A.H., Quigg A., Raven J.A., Shofield O., Taylor F.J.R.: The evolution of modern eukaryotic phytoplankton. Science 305, 354–360 (2004).

    CAS  PubMed  Google Scholar 

  • Fast N.M., Keeling P.J.: α and β subunits of pyruvate dehydrogenase E1 from the microsporidian Nosema locustae: mitochondrionderived carbon metabolism in microsporidia. Mol.Biochem.Parasitol. 117, 201–209 (2001).

    CAS  PubMed  Google Scholar 

  • Fast N.M., Kissinger J.C., Roos D.S., Keeling P.J.: Nuclear encoded plastid-targeted genes suggest a single common origin for apicomplexan and dinoflagellates plastids. Mol.Biol.Evol. 18, 418–426 (2001).

    CAS  PubMed  Google Scholar 

  • Frommolt R., Werner S., Paulsen H., Goss R., Wilhelm C., Zauner S., Meier U.-G., Grossman A.R., Bhattacharya D., Lohr M.: Ancient recruitment by chromists of green algal genes encoding enzymes for carotenoid biosynthesis. Mol.Biol. Evol. 25, 2653–2667 (2008).

    CAS  PubMed  Google Scholar 

  • Gajadhar A.A., Marquardt W.C., Hall R., Gunderson J., Ariztia-carmona E.V., Sogin M.L.: Ribosomal RNA sequences of Sarcocystis muris, Theileria annulata and Crypthecodinium cohnii reveal evolutionary relationship among apicomplexans, dinoflagellates and ciliates. Mol.Biochem.Parasitol. 45, 147–154 (1991).

    CAS  PubMed  Google Scholar 

  • Germot A., Philippe H., LE Guyader H.: Evidence for loss of mitochondria in Microsporidia from a mitochondrial-type HSP70 in Nosema locustae. Mol.Biochem.Parasitol. 87, 159–168 (1997).

    CAS  PubMed  Google Scholar 

  • Gibbs S.P.: The chloroplasts of Euglena may have evolved from symbiotic green algae. Can.J.Bot. 56, 2883–2889 (1978).

    Google Scholar 

  • Gibbs S.P.: The chloroplasts of some algal groups may have evolved from endosymbiotic eukaryotic algae. Ann.N.Y.Acad.Sci. 361, 193–208 (1981).

    CAS  PubMed  Google Scholar 

  • Gile G.H., Keeling P.J.: Nucleus-encoded periplastid-targeted EFL in chlorarachniophytes. Mol.Biol.Evol. 25, 1967–1977 (2008).

    CAS  PubMed  Google Scholar 

  • Gill E.E., Diaz-Triviño S., Barberà M.J., Silberman J.D., Stechman A., Gaston D., Tamas I., Roger J.R.: Novel mitochondrion-related organelles in the anaerobic amoeba Mastigamoeba balamuthi. Mol.Microbiol. 66, 1306–1320 (2007).

    CAS  PubMed  Google Scholar 

  • Gillott M.A., Gibbs S.P.: The cryptomonad nucleomorph: its ultrastructure and evolutionary significance. J.Phycol. 16, 558–568 (1981).

    Google Scholar 

  • Gilson P.R., Su V., Slamovits C.H., Reith M.E., Keeling P.J., Mcfadden G.I.: Complete nucleotide sequence of the chlorarachniophyte nucleomorph: nature’s smallest nucleus. Proc.Nat.Acad.Sci.USA 103, 9566–9571 (2006).

    CAS  PubMed  Google Scholar 

  • Gockel G., Hachtel W.: Complete gene map of the plastid genome of the nonphotosynthetic euglenoid flagellate Astasia longa. Protist 151, 347–351 (2000).

    CAS  PubMed  Google Scholar 

  • Gockel G., Hachtel W., Baier S., Fliss C., Henke M.: Genes for chloroplast apparatus are conserved in the reduced 73-kb plastid DNA of the nonphotosynthetic euglenoid flagellate Astasia longa. Curr.Genet. 26, 256–262 (1994).

    CAS  PubMed  Google Scholar 

  • Gould S.B.: Ariadne’s thread: guiding a protein across five membranes in cryptophytes. J.Phycol. 44, 22–26 (2008).

    Google Scholar 

  • Gould S.B., Sommer M.S., Hadfi K., Zauner S., Kroth P.G., Maier U.G.: Protein targeting into the complex plastid of cryptophytes. J.Mol.Evol. 62, 674–681 (2006a).

    CAS  PubMed  Google Scholar 

  • Gould S.B., Sommer M.S., Kroth P.G., Gile G.H., Keeling P.J., Maier U.G.: Nucleus-to-nucleus gene transfer and protein retargeting into a remnant cytoplasm of cryptophytes and diatoms. Mol.Biol.Evol. 23, 2413–2422 (2006b).

    CAS  PubMed  Google Scholar 

  • Gould S.B., Waller R.F., Mcfadden G.I.: Plastid evolution. Ann.Rev.Plant Biol. 59, 491–517 (2008).

    CAS  Google Scholar 

  • Gray J.C.: Chloroplast-to-nucleus signaling: a role for Mg-protoporphyrin. Trends Genet. 19, 526–529 (2003).

    CAS  PubMed  Google Scholar 

  • Gross J., Bhattacharya D.: Revaluating the evolution of the Toc and Tic protein translocons. Trends Plant Sci. 14, 13–20 (2008).

    PubMed  Google Scholar 

  • Gruber A., Vugrinec S., Hempel F., Gould S.B., Maier U.G., Kroth P.G.: Protein targeting into complex diatom plastids: functional characterisation of a specific targeting motif. Plant Mol.Biol. 64, 519–530 (2007).

    CAS  PubMed  Google Scholar 

  • Hackett J.D., Yoon H.S., Li S., Reyes-Prieto A., RÜMMELE E., Bhattacharya D.: Phylogenomic analysis supports the monophyly of cryptophytes and haptophytes and the association of Rhizaria with Chromalveolates. Mol.Biol.Evol. 27, 1702–1713 (2007).

    Google Scholar 

  • Hallick R.B., Hong L., Drager R.G., Favreau M.R., Monfort A., Orsat B., Spielmann A., Stutz E.: Complete sequence of Euglena gracilis chloroplast DNA. Nucl.Acids Res. 21, 3537–3544 (1993).

    CAS  PubMed  Google Scholar 

  • Hannaert V., Saavedra E., Duffieux F., Szikora J.P., Rigden D.J., Michels P.A.M., Opperdoes F.R.: Plant-like traits associated with metabolism of Trypanosoma parasites. Proc.Nat.Acad.Sci.USA 100, 1067–1071 (2003).

    CAS  PubMed  Google Scholar 

  • Hansen G., Botes L., DE Salas M.: Ultrastructure and large subunit rDNA sequences of Lepidodinium viride reveals a close relationship to Lepidodinium chlorophorum comb.nov. (= Gymnodinium chlorophorum). Phycol.Res. 55, 24–41 (2007).

    Google Scholar 

  • Harper J.T., Keeling P.J.: Nucleus-encoded, plastid targeted glyceraldehyde-3-phosphate dehydrogenase (GAPDH) indicates single origin for chromalveolate plastids. Mol.Biol.Evol. 20, 1730–1735 (2003).

    CAS  PubMed  Google Scholar 

  • Häusler T., Stierhof Y.D., Blattner J., Clayton C.: Conservation of mitochondrial targeting sequence function in mitochondrial and hydrogenosomal proteins from the early-branching eukaryotes Crithidia, Trypanosoma and Trichomonas. Eur.J.Cell Biol. 73, 240–251 (1997).

    PubMed  Google Scholar 

  • Heins L., Soll J.: Mixing the prokaryotic and the eukaryotic? Curr.Biol. 12, 215–217 (1998).

    Google Scholar 

  • Hempel F., Bozarth A., Sommer M.S., Zauner S., Przyborski J.M., Maier U.G.: Transport of nuclear-encoded proteins into secondarily evolved plastids. Biol.Chem. 388, 899–906 (2007).

    CAS  PubMed  Google Scholar 

  • Von Der Heyden S., Chao E.E., Vickerman K., Cavalier-smith T.: Ribosomal RNA phylogeny of bodonid and diplonemid flagellates and the evolution of Euglenozoa. J.Eukaryot.Microbiol. 51, 402–416 (2004).

    Google Scholar 

  • Hirt R.P., Healy B., Vossbrinck C.R., Canning E.U., Embley T.M.: A mitochondrial Hsp70 orthologue in Vairimorpha necatrix: molecular evidence that Microsporidia once contained mitochondria. Curr.Biol. 7, 995–998 (1997).

    CAS  PubMed  Google Scholar 

  • Hoef-Emden K.: Multiply independent losses of photosynthesis and differing evolutionary in the genus Cryptomonas (Cryptophyceae): combined phylogenetic analyses of DNA sequences of the nuclear and the nucleomorph ribosomal operons. J.Mol. Evol. 60, 183–195 (2005).

    CAS  PubMed  Google Scholar 

  • Howe C.J., Nisbet R.E.R., Barbrook A.C.: The remarkable chloroplast genome of dinoflagellates. J.Exp.Bot. 59, 1035–1045 (2008).

    CAS  PubMed  Google Scholar 

  • Huang J., Gogarten J.P.: Did an ancient chlamydial endosymbiosis facilitate the establishment of primary plastids? Genome Biol. 8, R99 (2007).

    PubMed  Google Scholar 

  • Imanian B., Carpenter K.J., Keeling P.J.: Mitochondrial genome of a tertiary endosymbiont retains genes for electron transport proteins. J.Eukaryot.Microbiol. 54, 146–153 (2007).

    CAS  PubMed  Google Scholar 

  • Ishida K.: Protein targeting into plastids: a key to understanding the symbiotic acquisitions of plastids. J.Plant Res. 118, 237–245 (2005).

    PubMed  Google Scholar 

  • Ishida K., Green B.R.: Second- and third-hand chloroplasts in dinoflagellates: phylogeny of oxygen-evolving enhancer 1 (PsbO) protein reveals replacement of nuclear-encoded plastid gene by that of a haptophyte tertiary endosymbiont. Proc.Nat.Acad.Sci. USA 99, 9294–9299 (2002).

    CAS  PubMed  Google Scholar 

  • Jakowitsch J., Neumann-Spallart C., Ma Y., Steiner J.M., Schenk H.E.A., Bohnert H.J., Löffelhardt W.: In vitro import of pre-ferredoxin-NADP+ oxidoreductase from Cyanophora paradoxa into cyanelles and into pea chloroplasts. FEBS Lett. 381, 153–155 (1993).

    Google Scholar 

  • Johnson M.D., Oldach D., Delwiche C.F., Stoecker D.K.: Retention of transcriptionally active cryptophyte nuclei by the ciliate Myrionecta rubra. Nature 445, 426–448 (2007).

    CAS  PubMed  Google Scholar 

  • Kalanon M., Mcfadden G.I.: The chloroplast protein translocation complexes of Chlamydomonas reinhardtii: a bioinformatic comparison of Toc and Tic components in plants, green algae and red algae. Genetics 179, 95–112 (2008).

    CAS  PubMed  Google Scholar 

  • Keeling P.J.: A brief history of plastids and their hosts. Protist 155, 3–7 (2004a).

    CAS  PubMed  Google Scholar 

  • Keeling P.J.: Comment on “The evolution of modern eukaryotic phytoplankton”. Science 306, 2191 (2004b).

    CAS  PubMed  Google Scholar 

  • Keeling P.J.: Bridge over troublesome plastids. Nature 451, 896–897 (2008).

    CAS  PubMed  Google Scholar 

  • Kent C., Carman G.M.: Interactions among pathways for phosphatidylcholine metabolism, CTP synthesis and secretion through the Golgi apparatus. TIBS 24, 146–150 (1999).

    CAS  PubMed  Google Scholar 

  • Kilian O., Kroth P.G.: Presequence acquisition during secondary endosymbiosis and the possible role of introns. J.Mol.Evol. 58, 712–721 (2004).

    CAS  PubMed  Google Scholar 

  • Knauf U., Hachtel W.: The genes encoding subunits of ATP synthase in the reduced plastid genome of chlorophyte alga Prototheca wickerhamii. Mol.Genet.Genom. 267, 492–497 (2002).

    CAS  Google Scholar 

  • Köhler S., Delwiche C.F., Denny P.W., Tilney L.G., Webster P., Wilson R.J., Palmer J.D., Roos D.S.: A plastid of probable green algal origin in apicomplexan parasites. Science 275, 1485–1489 (1997).

    PubMed  Google Scholar 

  • De Koning A.P., Keeling P.J.: Nucleus-encoded genes for plastid-targeted proteins in Helicosporidium: functional diversity of a cryptic plastid in a parasitic alga. Eukaryot.Cell 3, 1198–1205 (2004).

    PubMed  Google Scholar 

  • Krajčovič J.: Plastids as drug targets, pp. 171–211 in J. Berger: Advances in Cell and Molecular Biology. Kopp Publ., České Budějovice (Czech Republic) 2005.

    Google Scholar 

  • Krajčovič J., Vacula R., Löffelhardt W., Belicová A., Sláviková S., Ebringer L., Stutz E.: Molecular effects of some stress factors on the chloroplast genetic apparatus of the flagellate Euglena gracilis, pp. 121–128 in J. Argyroudi-Akoyunoglou, H. Senger: The Chloroplast: from Molecular Biology to Biotechnology. Kluwer Acad. Publ., Dordrecht 1999.

    Google Scholar 

  • Krajčovič J., Ebringer, L. Schwartzbach S.D.: Reversion of endosymbiosis?, pp. 185–206 in J. Seckbach: Symbiosis: Mechanisms and Models. Cellular Origin in Extreme Habitats, Vol. 4. Kluwer Acad. Publ., Dordrecht 2002.

    Google Scholar 

  • Krause K.: From chloroplasts to “cryptic” plastids: evolution of plastid genomes in parasitic plants. Curr.Genet. 54, 111–121 (2008).

    CAS  PubMed  Google Scholar 

  • Krause K., Berg S., Krupinska K.: Plastid transcription in the holoparasitic plant genus Cuscuta: parallel loss of the rrn16 PEP-promoter and the rpoA and rpoB genes coding for the plastid-encoded RNA polymerase. Planta 216, 815–823 (2003).

    CAS  PubMed  Google Scholar 

  • Kroth P.G.: Protein transport into secondary plastids and the evolution of primary and secondary plastids. Internat.Rev.Cytol. 221, 191–255 (2002).

    CAS  Google Scholar 

  • Lane C.E., Archibald J.M.: The eukaryotic tree of life: endosymbiosis takes its TOL. Trends Ecol.Evol. 23, 268–275 (2008).

    PubMed  Google Scholar 

  • Larkum A.W.D., Lockhart P.J., Howe C.J.: Shopping for plastids. Trends Plant Sci. 12, 189–195 (2007).

    CAS  PubMed  Google Scholar 

  • Leander B.S.: Did trypanosomatid parasites have photosynthetic ancestors? Trends Microbiol. 12, 251–258 (2004).

    CAS  PubMed  Google Scholar 

  • Leander B.S., Triemer R.E., Farmer M.A.: Character evolution in heterotrophic euglenids. Eur.J.Protistol. 37, 337–356 (2001).

    Google Scholar 

  • Leedale G.F., Vickermann K.: Phylum Euglenozoa, pp. 1135–1185 in J.J. Lee, G.F. Leedale, P. Bradbury: An Illustrated Guide to the Protozoa, 2nd ed. Society of Protozoologists, Lawrence 2000.

    Google Scholar 

  • Lefort-Tran M., Pouphile M., Freyssinet G., Pineau B.: Structural and functional significance of the chloroplast envelope of Euglena, immunocytological and freeze fracture study. J.Ultrastruct.Res. 73, 44–63 (1980).

    CAS  PubMed  Google Scholar 

  • Linton E., Hittner D., Levandowski C.F., Auld T., Triemer R.E.: A molecular study of euglenoid phylogeny using small subunit rDNA. J.Eukaryot.Microbiol. 46, 217–223 (1999).

    CAS  PubMed  Google Scholar 

  • Löffelhardt W., Stirewalt V.L., Michalowski C.B., Annarella M., Farley J.Y., Schluchter W.M., Chung S., Neumann-Spallart C., Steiner J.M., Jakowitsch J., Bohnert H.J., Bryant D.A.: The complete sequence of the cyanelle genome of Cyanophora paradoxa: the genetic complexity of a primitive plastid, pp. 39–48 in H.E.A. Schenk, R. Herrmann, K.W. Jeon, N.E. Müller, W. Schwemmler: Eukaryotism and Symbiosis. Springer-Verlag, Berlin-Heidelberg 1997.

    Google Scholar 

  • Mai Z., Ghosh S., Frisardi M., Rosenthal B., Rogers R., Samuelson J.: Hsp60 is targeted to a cryptic mitochondrion-derived organelle (“crypton”) in the microaerophilic protozoan parasite Entamoeba histolytica. Mol.Cell.Biol. 19, 2198–2205 (1999).

    CAS  PubMed  Google Scholar 

  • Margulis L.: Symbiosis and evolution. Sci.Am. 225, 48–57 (1971).

    CAS  PubMed  Google Scholar 

  • Marin B.: Origin and fate of chloroplasts in the euglenoida. Protist 155, 13–14 (2004).

    CAS  PubMed  Google Scholar 

  • Marin B., Palm A., Klingberg M., Melkonian M.: Phylogeny and taxonomic revision of plastid-containing euglenophytes based on SSU rDNA sequence comparison and synapomorphic signatures in the SSU rRNA secondary structure. Protist 154, 99–145 (2003).

    CAS  PubMed  Google Scholar 

  • Marin B., Nowak E.C.M., Melkonian M.: A plastid in the making: evidence for a second primary endosymbiosis. Protist 156, 425–432 (2005).

    CAS  PubMed  Google Scholar 

  • Martin W., Borst P.: Secondary loss of chloroplasts in trypanosomes. Proc.Nat.Acad.Sci.USA 100, 765–767 (2003).

    CAS  PubMed  Google Scholar 

  • Martin W., Müller M.: Origin of Mitochondria and Hydrogenosomes. Springer-Verlag, Berlin-Heidelberg-New York 2007.

    Google Scholar 

  • Martin W., Stoebe B., Goremykin V., Hansmann S., Hasegawa M., Kowallik K.V.: Gene transfer to the nucleus and the evolution of chloroplasts. Nature 393, 162–165 (1998).

    CAS  PubMed  Google Scholar 

  • Martin W., Rujan T., Richly E., Hansen A., Cornelsen S., Lins T., Leister D., Stoebe B., Hasegawa M., Penny D.: Evolutionary analysis of Arabidopsis, cyanobacterial and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc.Nat.Acad.Sci.USA 99, 12246–12251 (2002).

    CAS  PubMed  Google Scholar 

  • Matsuzaki M., Kuroiwa H., Kuroiwa T., Kita K., Nozaki H.: A cryptic algal group unveiled: a plastid biosynthesis pathway in the oyster parasite Perkinsus marinus. Mol.Biol.Evol. 25, 1167–1179 (2008).

    CAS  PubMed  Google Scholar 

  • Mcfadden G.I., VAN Dooren G.G.: Evolution: red algal genome affirms a common origin of all plastids. Curr.Biol. 14, R514–R516 (2004).

    CAS  PubMed  Google Scholar 

  • Mereschkowsky C.: Über Natur und Ursprung der Chromatophoren im Pflanzenreiche. Biol.Zbl. 25, 593–604 (1905).

    Google Scholar 

  • Moore R.B., Oborník M., Janouškovec J., Chrudimský T., Vancová M., Green D.H., Wright S.W., Davies N.W., Bolch C.J.S., Heimann K., Šlapeta J., Hoegh-Guldberg O., Logsdon J.M. Jr., CARTER D.A.: A photosynthetic alveolate closely related to apicomplexan parasites. Nature 451, 959–963 (2008).

    CAS  PubMed  Google Scholar 

  • Moustafa A., Reyes-Prieto A., Bhattacharya D.: Chlamydiae have contributed at least 55 genes to Plantae with predominantly plastid functions. PloS One 3, e2205 (2008).

    PubMed  Google Scholar 

  • Müllner A.N., Angeler D.G., Samuel R., Linton E.W., Triemer R.E.: Phylogenetic analysis of phagotrophic, phototrophic and osmotrophic euglenoids by using the nuclear 18S rDNA sequence. Internat.J.Syst.Evol.Microbiol. 51, 783–791 (2001).

    Google Scholar 

  • Nassoury N., Morse D.: Protein targeting to the chloroplasts of photosynthetic eukaryotes: getting there is half the fun. Biochim.Biophys.Acta 1743, 5–19 (2005).

    CAS  PubMed  Google Scholar 

  • Nassoury N., Cappadocia M., Morse D.: Plastid ultrastructure defines the protein import pathway in dinoflagellates. J.Cell Sci. 116, 2867–2874 (2003).

    CAS  PubMed  Google Scholar 

  • Nikolaev S.I., Berney C., Fahrni J.F., Bolivar I., Polet S., Mylnikov A.P., Aleshin V.V., Petrov N.B., Pawlowski J.: The twilight of Heliozoa and rise of Rhizaria, an emerging supergroup of amoeboid eukaryotes. Proc.Nat.Acad.Sci.USA 101, 8066–2071 (2004).

    CAS  PubMed  Google Scholar 

  • Nosenko T., Lidie K.L., VAN Dolah F.M., Lindquist E., Cheng J.F., Bhattacharya D.: Chimeric plastid proteome in the Florida “red tide” dinoflagellate Karenia brevis. Mol.Biol.Evol. 23, 2026–2038 (2006).

    CAS  PubMed  Google Scholar 

  • Not F., Valentin K., Romari K., Lovejoy C., Massana R., Töbe K., Vaulot D., Medlin L.K.: Picobiliphytes: a marine picoplanktonic algal group with unknown affinities to other eukaryotes. Science 315, 253–255 (2007).

    CAS  PubMed  Google Scholar 

  • Nozaki H.: A new scenario of plastid evolution: plastid primary endosymbiosis before divergence of “Plantae” emended. J.Plant Res. 118, 247–255 (2005).

    PubMed  Google Scholar 

  • Nozaki H., Matsuzaki M., Takahara M., Misumi O., Kuroiwa H., Hasegawa M., Shin I., Kohara Y., Ogasawa N., Kuroiwa T.: The phylogenetic position of red algae revealed by multiple nuclear genes from mitochondrial eukaryotes and an alternative hypothesis on the origin of plastids. J.Mol.Evol. 56, 485–497 (2003a).

    CAS  PubMed  Google Scholar 

  • Nozaki H., Ohta N., Matsuzaki M., Misumi O., Kuroiwa T.: Phylogeny of plastids based on cladistic analysis of gene loss inferred from complete plastid genome sequences. J.Mol.Evol. 57, 377–382 (2003b).

    CAS  PubMed  Google Scholar 

  • Okamoto N., Inouye I.: A secondary symbiosis in progress? Science 310, 287 (2005).

    CAS  PubMed  Google Scholar 

  • Palmer J.D.: The symbiotic birth and spread of plastids: how many times and whodunit? J.Phycol. 39, 4–11 (2003).

    CAS  Google Scholar 

  • Parfrey L.W., Barbero E., Lasser E., Dunthorn M., Bhattacharya D., Patterson D.J., Katz L.A.: Evaluating support for the current classification of eukaryotic diversity. PLoS Genet. 2, e220 (2006).

    PubMed  Google Scholar 

  • Patron N.J., Rogers M.B., Keeling P.J.: Gene replacement of fructose-1,6-bisphosphate aldolase supports the hypothesis of a single photosynthetic ancestor of chromalveolates. Eukaryot.Cell 3, 1169–1175 (2004).

    CAS  PubMed  Google Scholar 

  • Patron N.J., Waller R.F., Archibald J.M., Keeling P.J.: Complex protein targeting to dinoflagellate plastids. J.Mol.Biol. 348, 1015–1024 (2005).

    CAS  PubMed  Google Scholar 

  • Petersen J., Teich R., Brinkmann H., Cerff R.: A “green” phosphoribulokinase in complex algae with red plastids: evidence for a single secondary endosymbiosis leading to haptophytes, cryptophytes, heterokonts and dinoflagellates. J.Mol.Evol. 62, 143–157 (2006).

    CAS  PubMed  Google Scholar 

  • Philippe H., Lopez P., Brinkmann H., Budin K., Germot A., Laurent J., Moreira D., Müller M., LE Guyader H.: Early-branching or fast-evolving eukaryotes? An answer based on slowly evolving positions. Proc.Roy.Soc.Lond. B Biol.Sci. 267, 1213–1221 (2000).

    CAS  Google Scholar 

  • Phillips N., Calhoun S., Moustafa A., Bhattacharya D.: Genomic insights into evolutionary relationships among heterokont lineages emphasizing the Phaeophyceae. J.Phycol. 44, 15–18 (2008).

    CAS  Google Scholar 

  • Phipps K.D., Donaher N.A., Lane C.E., Archibald J.M.: Nucleomorph karyotype diversity in the freshwater cryptophyte genus Cryptomonas. J.Phycol. 44, 11–14 (2008).

    CAS  Google Scholar 

  • Polónyi J., Ebringer L., Dobias J., Krajčovič J.: Giant mitochondria in chloroplast-deprived Euglena gracilis late after N-succinimidylofloxacin treatment. Folia Microbiol. 43, 661–666 (1998).

    Google Scholar 

  • Preisfeld A., Busse I., Klingberg M., Talke S., Ruppel H.G.: Phylogenetic position and inter-relationship of the osmotrophic euglenids based on SSU rDNA data, with emphasis on the Rhabdomonadales (Euglenozoa). Internat.J.Syst.Evol.Microbiol. 51, 751–758 (2001).

    CAS  Google Scholar 

  • Ralph S.A., VAN Dooren G.G., Waller R.F., Crawford M.J., Fraunholz M.J., Foth B.J., Tonkin C.J., Roos D.S., McFadden G.I.: Metabolic maps and functions of the Plasmodium falciparum apicoplast. Nature Rev.Microbiol. 2, 203–216 (2004).

    CAS  Google Scholar 

  • Reinbothe S., Krauspe R., Parthier B.: In vitro transport of chloroplast proteins in a homologous Euglena system with particular reference to plastid leucyl-tRNA synthetase. Planta 181, 176–183 (1990).

    CAS  Google Scholar 

  • Reumann S., Davilla-Aponte J., Keegstra K.: The evolutionary origin of the protein translocating channel of chloroplastic envelope membranes: identification of a cyanobacterial homolog. Proc.Nat.Acad.Sci.USA 96, 784–789 (1999).

    CAS  PubMed  Google Scholar 

  • Reyes-Prieto A., Bhattacharya D.: Phylogeny of Calvin cycle enzymes supports Plantae monophyly. Mol.Phylogenet.Evol. 45, 384–391 (2007).

    CAS  PubMed  Google Scholar 

  • Reyes-Prieto A., Moustafa A., Bhattacharya D.: Multiple genes of apparent algal origin suggest ciliates may once have been photosynthetic. Curr.Biol. 18, 956–962 (2008).

    CAS  PubMed  Google Scholar 

  • Rice D.W., Palmer J.D.: An exceptional gene transfer in plastids: gene replacement by a distant bacterial paralog and evidence that haptophyte and cryptophyte plastids are sisters. BMC Biology 4, 31 (2006).

    PubMed  Google Scholar 

  • Rodríguez-Ezpeleta N., Brinkmann H., Burey S.C., Roure B., Burger G., Löffelhardt W., Bohnert H.J., Philippe H., Lang B.F.: Monophyly of primary photosynthetic eukaryotes: green plants, red algae, and glaucophytes. Curr.Biol. 15, 1325–1330 (2005).

    PubMed  Google Scholar 

  • Rogers M.B., Keeling P.J.: Lateral transfer and recompartmentalization of Calvin cycle enzymes of plants and algae. J.Mol.Evol. 58, 367–375 (2004).

    CAS  PubMed  Google Scholar 

  • Rogers M.B., Archibald J., Field M., Li C., Striepen B., Keeling P.J.: Plastid-targeted peptides from the chlorarachniophyte Bigelowiella natans. J.Eukaryot.Microbiol. 51, 529–535 (2004).

    CAS  PubMed  Google Scholar 

  • Rogers M.B., Gilson P.R., Su V., Mcfadden G.I., Keeling P.J.: The complete chloroplast genome of the chlorarachniophyte Bigelowiella natans: evidence for independent origins of chlorarachniophyte and euglenid secondary endosymbionts. Mol. Biol.Evol. 24, 54–62 (2007).

    CAS  PubMed  Google Scholar 

  • Roth M.: Lipid regulators of membrane traffic through the Golgi complex. Trends Cell Biol. 9, 174–179 (1999).

    CAS  PubMed  Google Scholar 

  • Round F.F.: The evolution of pigmented and unpigmented unicells: a consideration of protista. Biosystems 12, 61–69 (1980).

    CAS  PubMed  Google Scholar 

  • Saldarriaga J.F., Taylor F.J.R., Keeling P.J., Cavalier-Smith T.: Dinoflagellate nuclear SSU rRNA phylogeny suggests multiple plastid losses and replacements. J.Mol.Evol. 53, 204–213 (2001).

    CAS  PubMed  Google Scholar 

  • Sanchez-Puerta M.V., Delwiche C.F.: A hypothesis for plastid evolution in chromalveolates. J.Phycol. 44, 1097–1107 (2008).

    Google Scholar 

  • Sanchez-Puerta M.V., Lippmeier J.C., Apt K.E., Delwiche C.F.: Plastid genes in a non-photosynthetic dinoflagellate. Protist 158, 105–117 (2007).

    CAS  PubMed  Google Scholar 

  • Sato S., Clough B., Coates L., Wilson R.J.M.: Enzymes for heme biosynthesis are found in both the mitochondrion and plastid of the malaria parasite Plasmodium falciparum. Protist 155, 117–125 (2004).

    CAS  PubMed  Google Scholar 

  • Schiff J.A., Lyman H., Russel G.A.: Isolation of mutants from Euglena gracilis. Meth.Enzymol. 23A, 143–162 (1971).

    Google Scholar 

  • Schwartzbach S.D., Osafune T., Löffelhardt W.: Protein import into cyanelles and complex chloroplasts. Plant Mol.Biol. 38, 247–263 (1998).

    CAS  PubMed  Google Scholar 

  • Sekiguchi H., Moriya M., Nakayama T., Inouye I.: Vestigial chloroplasts in heterotrophic stramenopiles Pteridomonas danica and Ciliophrys infusionum (Dictyophyceae). Protist 153, 157–167 (2002).

    CAS  PubMed  Google Scholar 

  • Shashidhara L.S., Lim S.H., Schackleton J.B., Robinson C., Smith A.G.: Protein targeting across the three membranes of the Euglena chloroplast envelope. J.Biol.Chem. 267, 12885–12891 (1992).

    CAS  PubMed  Google Scholar 

  • Simpson A.G.B., Roger A.J.: The real “kingdoms” of eukaryotes. Curr.Biol. 14, R693–R696 (2004a).

    CAS  PubMed  Google Scholar 

  • Simpson A.G.B., Roger A.J.: Protein phylogenies robustly resolve the deep-level relationships within Euglenozoa. Mol.Phylogenet. Evol. 30, 201–212 (2004b).

    CAS  PubMed  Google Scholar 

  • Sláviková S., Vacula R., Fang Z., Ehara T., Osafune T., Schwartzbach S.D.: Homologous and heterologous reconstitution of Golgi to chloroplast transport and protein import into the complex chloroplasts of Euglena. J.Cell Sci. 118, 1651–1661 (2005).

    PubMed  Google Scholar 

  • Soll J.: Protein Trafficking in Plant Cells. Kluwer Academic Publishers, Dordrecht 1998.

    Google Scholar 

  • Soll J.: Protein import into chloroplasts. Curr.Opin.Plant.Biol. 5, 529–535 (2002).

    CAS  PubMed  Google Scholar 

  • Sommer M.S., Gould S.B., Lehmann P., Gruber A., Przyborski J.M., Maier U.G.: Der1-mediated preprotein import into the periplastid compartment of chromalveolates? Mol.Biol.Evol. 24, 918–928 (2007).

    CAS  PubMed  Google Scholar 

  • Stechmann A., Cavalier-Smith T.: Rooting the eukaryote tree by using a derived gene fusion. Science 297, 89–91 (2002).

    CAS  PubMed  Google Scholar 

  • Stechmann A., Cavalier-Smith T.: Phylogenetic analysis of eukaryotes using heat-shock protein Hsp90. J.Mol.Evol. 57, 408–419 (2003a).

    CAS  PubMed  Google Scholar 

  • Stechmann A., Cavalier-Smith T.: The root of the eukaryote tree pinpointed. Curr.Biol. 13, R665–R666 (2003b).

    CAS  PubMed  Google Scholar 

  • Steiner J.M., Löffelhardt W.: Protein import into cyanelles. Trends Plant Sci. 7, 72–77 (2002).

    CAS  PubMed  Google Scholar 

  • Steiner J.M., Löffelhardt W.: Protein translocation into and within cyanelles. Mol.Membr.Biol. 22, 123–132 (2005).

    CAS  PubMed  Google Scholar 

  • Steiner J.M., Yusa F., Pompe J.A., Löffelhardt W.: Homologous protein import machineries in chloroplasts and cyanelles. Plant J. 44, 646–652 (2005).

    CAS  PubMed  Google Scholar 

  • Stiller J.W., Reel D.C., Johnson J.C.: A single origin of plastids revisited: convergent evolution in organellar genome content. J.Phycol. 39, 95–105 (2003).

    CAS  Google Scholar 

  • Sulli C., Fang Z.-W., Muchhal U., Schwartzbach S.D.: Topology of Euglena chloroplast protein precursors within endoplasmic reticulum to Golgi to chloroplast transport vesicles. J.Biol.Chem. 274, 457–463 (1999).

    CAS  PubMed  Google Scholar 

  • Sveshnikova N., Grimm R., Soll J., Schleiff E.: Topology studies of the chloroplast protein import channel Toc75. Biol.Chem. 381, 687–693 (2000).

    CAS  PubMed  Google Scholar 

  • Takishita K., Kawachi M., Noël M.-H., Matsumoto T., Kakizoe N., Watanabe M.M., Inouye I., Ishida K.-I.: Origins of plastids and glyceraldehyde-3-phosphate dehydrogenase genes in the green-colored dinoflagellate Lepidodinium chlorophorum. Gene 410, 26–36 (2008).

    CAS  PubMed  Google Scholar 

  • Teich R., Zauner S., Baurain D., Brinkmann H., Petersen J.: Origin and distribution of Calvin cycle fructose and sedoheptulose bisphosphatases in Plantae and complex algae: a single secondary origin of complex red plastids and subsequent propagation via tertiary endosymbioses. Protist 158, 263–276 (2007).

    CAS  PubMed  Google Scholar 

  • Tengs T., Dahlberg O.J., Shalchian-Tabrizi K., Klaveness D., Rudi K., Delwiche C.F., Jakobsen K.S.: Phylogenetic analyses indicate that the 19’-hexanoyloxy-fucoxanthin-containing dinoflagellates have tertiary plastids of haptophyte origin. Mol. Biol.Evol. 17, 718–729 (2000).

    CAS  PubMed  Google Scholar 

  • Theissen U., Martin W.: The difference between organelles and endosymbionts. Curr.Biol. 16, R1016–R1017 (2006).

    CAS  PubMed  Google Scholar 

  • Tonkin C.J., Kalanon M., McFadden G.I.: Protein targeting to the malaria parasite plastid. Traffic 9, 166–175 (2008).

    CAS  PubMed  Google Scholar 

  • Tovar J., Fischer A., Clark C.G.: The mitosome, a novel organelle related to mitochondria in the amitochondrial parasite Entamoeba histolytica. Mol.Microbiol. 32, 1019–1021 (1999).

    Google Scholar 

  • Tovar J., León-Avila G., Sánchez L.B., Sutak R., Tachezy J., VAN DER Giezen M., Hernández M., Müller M., Lucucq J.M.: Mitochondrial remnant organelles of Giardia function in iron-sulfur protein maturation. Nature 426, 172–176 (2003).

    CAS  PubMed  Google Scholar 

  • Turmel M., Gagnon M.-C., O’Kelly C.J., Otis C., Lemieux C.: The chloroplast genomes of the green algae Pyramimonas, Monomastix, and Pycnococcus shed new light on the evolutionary history of prasinophytes and the origin of the secondary chloroplasts of euglenids. Mol.Biol.Evol. 26, 631–648 (2009).

    CAS  PubMed  Google Scholar 

  • Vacula R., Steiner J.M., Krajčovič J., Ebringer L., Löffelhardt W.: Nucleus-encoded precursors to thylakoid lumen proteins of Euglena gracilis possess tripartite presequences. DNA Res. 6, 45–49 (1999).

    CAS  PubMed  Google Scholar 

  • Vacula R., Steiner J.M., Krajčovič J., Ebringer L., Löffelhardt W.: Plastid state- and light-dependent regulation of the expression of nucleus-encoded genes for chloroplast proteins in the flagellate Euglena gracilis. Folia Microbiol. 46, 433–441 (2001).

    CAS  Google Scholar 

  • Vacula R., Sláviková S., Schwartzbach S.D.: Protein trafficking to the complex chloroplasts of Euglena, pp. 219–237 in M. van der Giezen (Ed.): Methods in Molecular Biology, Vol. 390: Protein Targeting Protocols, 2nd ed. Humana Press, Totowa 2007.

    Google Scholar 

  • Vernon D., Gutell R.R., Cannone J.J., Rumpf R.W., Birky C.W.: Accelerated evolution of functional plastid rRNA and elongational factor genes due to reduced protein synthetic load after the loss of photosynthesis in the chlorophyte alga Polytoma. Mol.Biol.Evol. 18, 1810–1822 (2001).

    CAS  PubMed  Google Scholar 

  • Williams B.A.P., Hirt R.P., Lucocq J.M., Embley T.M.: A mitochondrial remnant in the microsporidian Trachipleistophora hominis. Nature 418, 865–869 (2002).

    CAS  PubMed  Google Scholar 

  • Wilson R.J.M.: Plastid functions in the Apicomplexa. Protist 155, 11–12 (2004).

    CAS  PubMed  Google Scholar 

  • Wilson R.J.M.: Parasite plastids: approaching the endgame. Biol.Rev. 80, 129–15 (2005).

    PubMed  Google Scholar 

  • Wilson R.J.M., Denny P.W., Preiser P.R., Rangachari K., Roberts K., Roy A., Whyte A., Strath M., Moore D.J., Moore P.W., Williamson D.H.: Complete gene map of the plastid-like DNA of the malaria parasite Plasmodium falciparum. J.Mol.Biol. 261, 155–172 (1996).

    CAS  PubMed  Google Scholar 

  • Woese C.R., Kandler O., Wheelis M.L.: Toward a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eukarya. Proc.Nat.Acad.Sci.USA 87, 4576–4579 (1990).

    CAS  PubMed  Google Scholar 

  • Yoon H.S., Hackett J.D., Pinto G., Bhattacharya D.: The single, ancient origin of chromist plastids. Proc.Nat.Acad.Sci.USA 99, 15507–15512 (2002a).

    CAS  PubMed  Google Scholar 

  • Yoon H.S., Hackett J.D., Bhattacharya D.: A single origin of the peridinin- and fucoxanthin-containing plastids in dinoflagellates through tertiary endosymbiosis. Proc.Nat.Acad.Sci.USA 99, 11724–11729 (2002b).

    CAS  PubMed  Google Scholar 

  • Yoon H.S., Hackett J.D., Van Dolah F.M., Nosenko T., Lidie K.L., Bhattacharya D.: Tertiary endosymbiosis driven genome evolution in dinoflagellate algae. Mol.Biol.Evol. 22, 1299–1308 (2005).

    CAS  PubMed  Google Scholar 

  • Yoon H.S., Reyes-Prieto A., Melkonian M., Bhattacharya D.: Minimal plastid evolution in the Paulinella endosymbiont. Curr. Biol. 16, R670–R672 (2006).

    CAS  PubMed  Google Scholar 

  • Zhang Z., Green B.R., Cavalier-Smith T.: Single gene circles in dinoflagellate chloroplast genomes. Nature 400, 155–159 (1999).

    CAS  PubMed  Google Scholar 

  • Zhang Z., Green B.R., Cavalier-Smith T.: Phylogeny of ultra-rapidly evolving chloroplast genes: a possible common origin for sporozoan and dinoflagellate plastids. J.Mol.Evol. 51, 26–40 (2000).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Krajčovič.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vesteg, M., Vacula, R. & Krajčovič, J. On the origin of chloroplasts, import mechanisms of chloroplast-targeted proteins, and loss of photosynthetic ability — review . Folia Microbiol 54, 303–321 (2009). https://doi.org/10.1007/s12223-009-0048-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-009-0048-z

Keywords

Navigation