Skip to main content
Log in

Agrobacterium-mediated transformation as a tool for functional genomics in fungi

  • Review Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

In the era of functional genomics, the need for tools to perform large-scale targeted and random mutagenesis is increasing. A potential tool is Agrobacterium-mediated fungal transformation. A. tumefaciens is able to transfer a part of its DNA (transferred DNA; T-DNA) to a wide variety of fungi and the number of fungi that can be transformed by Agrobacterium-mediated transformation (AMT) is still increasing. AMT has especially opened the field of molecular genetics for fungi that were difficult to transform with traditional methods or for which the traditional protocols failed to yield stable DNA integration. Because of the simplicity and efficiency of transformation via A. tumefaciens, it is relatively easy to generate a large number of stable transformants. In combination with the finding that the T-DNA integrates randomly and predominantly as a single copy, AMT is well suited to perform insertional mutagenesis in fungi. In addition, in various gene-targeting experiments, high homologous recombination frequencies were obtained, indicating that the T-DNA is also a useful substrate for targeted mutagenesis. In this review, we discuss the potential of the Agrobacterium DNA transfer system to be used as a tool for targeted and random mutagenesis in fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abuodeh RO, Orbach MJ, Mandel MA, Das A, Galgiani JN (2000) Genetic transformation of Coccidioides immitis facilitated by Agrobacterium tumefaciens. J Infect Dis 181:2106–2110

    Article  CAS  PubMed  Google Scholar 

  • Adachi K, Nelson GH, Peoples KA, Frank SA, Montenegro-Chamorro MV, DeZwaan TM, Ramamurthy L, Shuster JR, Hamer L, Tanzer MM (2002) Efficient gene identification and targeted gene disruption in the wheat blotch fungus Mycosphaerella graminicola using TAGKO. Curr Genet 42:123–127

    Article  CAS  PubMed  Google Scholar 

  • Amey RC, Athey-Pollard A, Burns C, Mills PR, Bailey A, Foster GD (2002) PEG-mediated and Agrobacterium-mediated transformation in the mycopathogen Verticillium fungicola. Mycol Res 106:4–11

    Article  Google Scholar 

  • Amey RC, Mills PR, Bailey A, Foster GD (2003) Investigating the role of a Verticillium fungicola beta-1,6-glucanase during infection of Agaricus bisporus using targeted gene disruption. Fungal Genet Biol 39:264–275

    Article  CAS  PubMed  Google Scholar 

  • Asch DK, Kinsey JA (1990) Relationship of vector insert size to homologous integration during transformation of Neurospora crassa with the cloned am (GDH) gene. Mol Gen Genet 221:37–43

    Article  CAS  PubMed  Google Scholar 

  • Attikum H van, Hooykaas PJ (2003) Genetic requirements for the targeted integration of Agrobacterium T-DNA in Saccharomyces cerevisiae. Nucleic Acid Res 31:826–832

    Article  PubMed  Google Scholar 

  • Attikum H van, Bundock P, Hooykaas PJ (2001) Non-homologous end-joining proteins are required for Agrobacterium T-DNA integration. EMBO J 20:6550–6558

    Article  PubMed  Google Scholar 

  • Azpiroz-Leehan R, Feldmann KA (1997) T-DNA insertion mutagenesis in Arabidopsis: going back and forth. Trends Genet 13:152–156

    Article  CAS  PubMed  Google Scholar 

  • Bader GD, Heilbut A, Andrews B, Tyers M, Hughes T, Boone C (2003) Functional genomics and proteomics: charting a multidimensional map of the yeast cell. Trends Cell Biol 13:344–356

    Article  CAS  PubMed  Google Scholar 

  • Bahler J, Wu JQ, Longtine MS, Shah NG, McKenzie A, Steever AB, Wach A, Philippsen P, Pringle JR (1998) Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast 14:943–951

    Article  CAS  PubMed  Google Scholar 

  • Bakarat A, Gallois P, Raynal M, Mestre-Ortega D, Sallaud C, Guiderdoni E, Delseny M, Bernardi G (2000) The distribution of T-DNA in the genomes of transgenic Arabidopsis and rice. FEBS Lett 471:161–164

    Article  PubMed  Google Scholar 

  • Bako L, Umeda M, Tiburcio AF, Schell J, Koncz C (2003) The VirD2 pilot protein of Agrobacterium-transferred DNA interacts with the TATA box-binding protein and a nuclear protein kinase in plants. Proc Natl Acad Sci USA 100:10108–10113

    Article  CAS  PubMed  Google Scholar 

  • Ballas N, Citovsky V (1997) Nuclear localization signal binding protein from Arabidopsis mediates nuclear import of Agrobacterium VirD2 protein. Proc Natl Acad Sci USA 94:10723–10728

    Article  CAS  PubMed  Google Scholar 

  • Balzergue S, Dubreucq B, Chauvin S, Le Clainche I, Le Boulaire F, de Rose R, Samson F, Biaudet V, Lecharny A, Cruaud C, Weissenbach J, Caboche M, Lepiniec L (2001) Improved PCR-walking for large-scale isolation of plant T-DNA borders. Biotechniques 30:496–498, 502, 504

    CAS  PubMed  Google Scholar 

  • Baudin A, Ozier-Kalogeropoulos O, Denouel A, LaCroute F, Cullin C (1993) A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res 21:3329–3330

    CAS  PubMed  Google Scholar 

  • Bird D, Bradshaw R (1997) Gene targeting is locus dependent in the filamentous fungus Aspergillus nidulans. Mol Gen Genet 255:219–225

    Article  CAS  PubMed  Google Scholar 

  • Bolker M, Bohnert HU, Braun KH, Gorl J, Kahmann R (1995) Tagged pathogenicity genes in Ustilago maydis by restriction enzyme-mediated integration (REMI). Mol Gen Genet 248:547–552

    CAS  PubMed  Google Scholar 

  • Brandhorst TT, Rooney PJ, Sullivan TD, Klein B (2002) Molecular genetic analysis of Blastomyces dermatitidis reveals new insights about pathogenic mechanisms. Int J Med Microbiol 292:363–371

    CAS  PubMed  Google Scholar 

  • Brown JS, Holden DW (1998) Insertional mutagenesis of pathogenic fungi. Curr Opin Microbiol 1:390–394

    Article  CAS  PubMed  Google Scholar 

  • Bundock P, Hooykaas PJ (1996) Integration of Agrobacterium tumefaciens T-DNA in the Saccharomyces cerevisiae genome by illegitimate recombination. Proc Natl Acad Sci USA 93:15272–15275

    Article  CAS  PubMed  Google Scholar 

  • Bundock P, Dulk-Ras A, Beijersbergen A, Hooykaas PJ (1995) Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO J 14:3206–3214

    CAS  PubMed  Google Scholar 

  • Bundock P, Mroczek K, Winkler AA, Steensma HY, Hooykaas PJ (1999) T-DNA from Agrobacterium tumefaciens as an efficient tool for gene targeting in Kluyveromyces lactis. Mol Gen Genet 261:115–121

    Article  CAS  PubMed  Google Scholar 

  • Bundock P, van Attikum H, Dulk-Ras A, Hooykaas PJ (2002) Insertional mutagenesis in yeasts using T-DNA from Agrobacterium tumefaciens. Yeast 19:529–536

    Article  CAS  PubMed  Google Scholar 

  • Campoy S, Perez F, Martin JF, Gutierrez S, Liras P (2003) Stable transformants of the azaphilone pigment-producing Monascus purpureus obtained by protoplast transformation and Agrobacterium-mediated DNA transfer. Curr Genet 43:447–452

    Article  CAS  PubMed  Google Scholar 

  • Cangelosi GA, Ankenbauer RG, Nester EW (1990) Sugars induce the Agrobacterium virulence genes through a periplasmic binding protein and a transmembrane signal protein. Proc Natl Acad Sci USA 87:6708–6712

    CAS  PubMed  Google Scholar 

  • Castle LA, Errampalli D, Atherton TL, Franzmann LH, Yoon ES, Meinke DW (1993) Genetic and molecular characterization of embryonic mutants identified following seed transformation in Arabidopsis. Mol Gen Genet 241:504–514

    Article  CAS  PubMed  Google Scholar 

  • Chaveroche MK, Ghigo JM, d’Enfert C (2000) A rapid method for efficient gene replacement in the filamentous fungus Aspergillus nidulans. Nucleic Acids Res 28:E97

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Stone M, Schlagnhaufer C, Romaine CP (2000) A fruiting body tissue method for efficient Agrobacterium-mediated transformation of Agaricus bisporus. Appl Environ Microbiol 66:4510–4513

    Article  CAS  PubMed  Google Scholar 

  • Christie PJ (1997) Agrobacterium tumefaciens T-complex transport apparatus: a paradigm for a new family of multifunctional transporters in eubacteria. J Bacteriol 179:3085–3094

    CAS  PubMed  Google Scholar 

  • Christie PJ, Ward JE, Winans SC, Nester EW (1988) The Agrobacterium tumefaciens virE2 gene product is a single-stranded-DNA-binding protein that associates with T-DNA. J Bacteriol 170:2659–2667

    CAS  PubMed  Google Scholar 

  • Chuang CF, Meyerowitz EM (2000) Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Proc Natl Acad Sci USA 97:4985–4990

    Article  CAS  PubMed  Google Scholar 

  • Citovsky V, Wong ML, Zambryski P (1989) Cooperative interaction of Agrobacterium VirE2 protein with single-stranded DNA: implications for the T-DNA transfer process. Proc Natl Acad Sci USA 86:1193–1197

    CAS  PubMed  Google Scholar 

  • Combier JP, Melayah D, Raffier C, Gay G, Marmeisse R (2003) Agrobacterium tumefaciens-mediated transformation as a tool for insertional mutagenesis in the symbiotic ectomycorrhizal fungus Hebeloma cylindrosporum. FEMS Microbiol Lett 220:141–148

    Article  CAS  PubMed  Google Scholar 

  • Cottage A, Yang A, Maunders H, de Lacy RC, Ramsay NA (2001) Identification of DNA sequences flanking T-DNA insertions by PCR-walking. Plant Mol Biol Rep 19:321–327

    CAS  Google Scholar 

  • Covert SF, Kapoor P, Lee M, Briley A, Nairn CJ (2001) Agrobacterium-mediated transformation of Fusarium circinatum. Mycol Res 105:259–264

    Article  CAS  Google Scholar 

  • Daboussi MJ, Capy P (2003) Transposable elements in filamentous fungi. Annu Rev Microbiol 57:275–299

    Article  CAS  PubMed  Google Scholar 

  • Degefu Y, Hanif M (2003) Agrobacterium tumefaciens-mediated transformation of Helminthosporium turcicum, the maize leaf-blight fungus. Arch Microbiol 180:279–284

    Article  CAS  PubMed  Google Scholar 

  • Dillen W, DeClercq J, Kapila J, Zambre M, Montagu M van, Angenon G (2002) The effect of temperature on Agrobacterium tumefaciens-mediated gene transfer to plants. Plant J 12:1459–1463

    Article  Google Scholar 

  • Dobinson KF, Grant SJ, Kang S (2003) Cloning and targeted disruption, via Agrobacterium tumefaciens-mediated transformation, of a trypsin protease gene from the vascular wilt fungus Verticillium dahliae. Curr Genet 45:104–110

    Article  PubMed  Google Scholar 

  • Dombek P, Ream W (1997) Functional domains of Agrobacterium tumefaciens single-stranded DNA-binding protein VirE2. J Bacteriol 179:1165–1173

    CAS  PubMed  Google Scholar 

  • dos-Reis MC, Pelegrinelli Fungaro MH, Duarte RTD, Furlaneto L, Furnaleto MC (2004) Agrobacterium tumefaciens-mediated genetic transformation of the entomopathogenic fungus Beauveria bassiana. J Microbiol Methods 58:197–202

    Article  CAS  PubMed  Google Scholar 

  • Durrenberger F, Crameri A, Hohn B, Koukolikova-Nicola Z (1989) Covalently bound VirD2 protein of Agrobacterium tumefaciens protects the T-DNA from exonucleolytic degradation. Proc Natl Acad Sci USA 86:9154–9158

    CAS  PubMed  Google Scholar 

  • Fang W, Zhang Y, Yang X, Zheng X, Duan H, Li Y, Pei Y (2004) Agrobacterium tumefaciens-mediated transformation of Beauveria bassiana using an herbicide resistance gene as a selection marker. J Invertebr Pathol 85:18–24

    Article  CAS  PubMed  Google Scholar 

  • Firon A, Villalba F, Beffa R, d’Enfert C (2003) Identification of essential genes in the human fungal pathogen Aspergillus fumigatus by transposon mutagenesis. Eukaryot Cell 2:247–255

    Article  CAS  PubMed  Google Scholar 

  • Fitzgerald AM, Mudge AM, Gleave AP, Plummer KM (2003) Agrobacterium and PEG-mediated transformation of the phytopathogen Venturia inaequalis. Mycol Res 107:803–810

    Article  CAS  PubMed  Google Scholar 

  • Fitzgerald A, Van Kan JA, Plummer KM (2004) Simultaneous silencing of multiple genes in the apple scab fungus, Venturia inaequalis, by expression of RNA with chimeric inverted repeats. Fungal Genet Biol 41:963–971

    Article  CAS  PubMed  Google Scholar 

  • Fullner KJ, Nester EW (1996) Temperature affects the T-DNA transfer machinery of Agrobacterium tumefaciens. J Bacteriol 178:1498–1504

    CAS  PubMed  Google Scholar 

  • Gardiner DM, Howlett BJ (2004) Negative selection using thymidine kinase increases the efficiency of recovery of transformants with targeted genes in the filamentous fungus Leptosphaeria maculans. Curr Genet 45:249–255

    Article  CAS  PubMed  Google Scholar 

  • Gardiner DM, Cozijnsen AJ, Wilson LM, Soledade M, Pedras C, Howlett BJ (2005) The sirodesmin biosynthetic gene cluster of the plant pathogenic fungus Leptosphaeria maculans. Mol Microbiol 53:1307–1318

    Article  Google Scholar 

  • Gelvin SB (2000) Agrobacterium and plant genes involved in T-DNA transfer and integration. Annu Rev Plant Physiol Plant Mol Biol 51:223–256

    Article  CAS  PubMed  Google Scholar 

  • Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the ‘gene-jockeying tool’. Microbiol Mol Biol Rev 67:16–37

    Article  CAS  PubMed  Google Scholar 

  • Gheysen G, Villarroel R, van Montagu M (1991) Illegitimate recombination in plants: a model for T-DNA integration. Genes Dev 5:287–297

    CAS  PubMed  Google Scholar 

  • Gibson SI, Sommerville C (1992) In: Koncz C, Chua N-H, Schell J (eds) Methods in Arabidopsis research. World Scientific, Singapore, pp 119–143

    Google Scholar 

  • Godio RP, Fouces R, Gudina EJ, Martin JF (2004) Agrobacterium tumefaciens-mediated transformation of the antitumor clavaric acid-producing basidiomycete Hypholoma sublateritium. Curr Genet 46:287–294

    Article  CAS  PubMed  Google Scholar 

  • Gouka RJ, Gerk C, Hooykaas PJ, Bundock P, Musters W, Verrips CT, Groot MJ de (1999) Transformation of Aspergillus awamori by Agrobacterium tumefaciens-mediated homologous recombination. Nat Biotechnol 17:598–601

    Article  CAS  PubMed  Google Scholar 

  • Gray M, Honigberg SM (2001) Effect of chromosomal locus, GC content and length of homology on PCR-mediated targeted gene replacement in Saccharomyces. Nucleic Acids Res 29:5156–5162

    Article  CAS  PubMed  Google Scholar 

  • Groot MJ de, Bundock P, Hooykaas PJ, Beijersbergen AG (1998) Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol 16:839–842

    Article  PubMed  Google Scholar 

  • Haaren MJ van, Sedee NJ, Schilperoort RA, Hooykaas PJ (1987) Overdrive is a T-region transfer enhancer which stimulates T-strand production in Agrobacterium tumefaciens. Nucleic Acids Res 15:8983–8997

    PubMed  Google Scholar 

  • Hamer L, Adachi K, Montenegro-Chamorro MV, Tanzer MM, Mahanty SK, Lo C, Tarpey RW, Skalchunes AR, Heiniger RW, Frank SA, Darveaux BA, Lampe DJ, Slater TM, Ramamurthy L, DeZwaan TM, Nelson GH, Shuster JR, Woessner J, Hamer JE (2001) Gene discovery and gene function assignment in filamentous fungi. Proc Natl Acad Sci USA 98:5110–5115

    Article  CAS  PubMed  Google Scholar 

  • Hanif M, Pardo AG, Gorfer M, Raudaskoski M (2002) T-DNA transfer and integration in the ectomycorrhizal fungus Suillus bovinus using hygromycin B as a selectable marker. Curr Genet 41:183–188

    Article  CAS  PubMed  Google Scholar 

  • Hilleman D, Puhler A, Wohlleben W (1991) Gene disruption and gene replacement in Streptomyces via single-stranded DNA transformation of integration vectors. Nucleic Acids Res 19:727–731

    PubMed  Google Scholar 

  • Hoekema A, Hirsch PR, Hooykaas PJ, Schilperoort RA (1983) A binary vector strategy based on separation of vir-region and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303:179–180

    Article  CAS  Google Scholar 

  • Hoffman B, Breuil C (2004) Disruption of the subtilase gene, albin1, in Ophiostoma piliferum. Appl Environ Microbiol 70:3898–3903

    Article  CAS  PubMed  Google Scholar 

  • Hooykaas PJ, Beijersbergen AG (1994) The virulence system of Agrobacterium tumefaciens. Annu Rev Phytopathol 32:157–179

    Article  CAS  Google Scholar 

  • Hua SB, Qiu M, Chan E, Zhu L, Luo Y (1997) Minimum length of sequence homology required for in vivo cloning by homologous recombination in yeast. Plasmid 38:91–96

    Article  CAS  PubMed  Google Scholar 

  • Hua-Van A, Langin T, Daboussi MJ (2002) Aberrant transposition of a Tc1-mariner element, impala, in the fungus Fusarium oxysporum. Mol Genet Genomics 267:79–87

    Article  CAS  PubMed  Google Scholar 

  • Hynes MJ (1996) Genetic transformation of filamentous fungi. J Genet 75:297–311

    CAS  Google Scholar 

  • Idnurm A, Heitman J (2005) Light controls growth and development via a conserved pathway in the fungal kingdom. PLoS Biol 3:e95

    Article  PubMed  Google Scholar 

  • Idnurm A, Reedy JL, Nussbaum JC, Heitman J (2004) Cryptococcus neoformans virulence gene discovery through insertional mutagenesis. Eukaryot Cell 3:420–429

    Article  CAS  PubMed  Google Scholar 

  • Jeon J-S, Lee S, Jung K-H, Jun S-H, Jeong D-H, Lee J, Kim C, Jang S, Lee S, Yang K, Nam J, An K, Han M-J, Sung R-J, Choi H-S, Yu J-H, Choi J-H, Cho S-Y, Cha S-S, Kim S-I, An G (2000) T-DNA insertional mutagenesis for functional genomics in rice. Plant J 22:561–570

    Article  CAS  PubMed  Google Scholar 

  • Jones DH, Winistorfer SC (1993) Genome walking with 2-kb to 4-kb steps using panhandle PCR. PCR Methods Appl 2:197–203

    CAS  PubMed  Google Scholar 

  • Kado CI (2000) The role of the T-pilus in horizontal gene transfer and tumorigenesis. Curr Opin Microbiol 3:643–648

    Article  CAS  PubMed  Google Scholar 

  • Kadotani N, Nakayashiki H, Tosa Y, Mayama S (2003) RNA silencing in the phytopathogenic fungus Magnaporthe oryzae. Mol Plant Microbe Interact 16:769–776

    CAS  PubMed  Google Scholar 

  • Kahmann R, Basse C (1999) Restriction enzyme mediated integration (REMI) and its impact on the isolation of pathogenicity genes in fungi attacking plants. Eur J Plant Pathol 105:221–229

    Article  CAS  Google Scholar 

  • Kamath RS, Ahringer J (2003) Genome-wide RNAi screening in Caenorhabditis elegans. Methods 30:313–321

    Article  CAS  PubMed  Google Scholar 

  • Kellner EM, Orsborn KI, Siegel EM, Mandel MA, Orbach MJ, Galgiani JN (2005) Coccidiodes posadasii contains a single 1,3-beta-glucan synthase gene that appears to be essential for growth. Eukaryot Cell 4:111–120

    Article  CAS  PubMed  Google Scholar 

  • Kempken F, Kuck U (1996) Transposons in filamentous fungi—facts and perspectives. Bioassays 20:652–659

    Article  Google Scholar 

  • Khang CH, Park S-Y, Lee Y-H, Kang S (2005) A dual selection based, targeted gene replacement tool for Magnaporthe grisea and Fusarium oxysporum. Fungal Genet Biol (in press)

  • Koncz C, Martini N, Mayerhofer R, Koncz-Kalman Z, Korber H, Redei GP, Schell J (1989) High-frequency T-DNA-mediated gene tagging in plants. Proc Natl Acad Sci USA 86:8467–8471

    CAS  PubMed  Google Scholar 

  • Koncz C, Nemeth K, Redei GP, Schell J (1992) T-DNA insertional mutagenesis in Arabidopsis. Plant Mol Biol 20:963–976

    Article  CAS  PubMed  Google Scholar 

  • Kooistra R, Hooykaas PJ, Steensma HY (2004) Efficient gene targeting in Kluyveromyces lactis. Yeast 21:781–792

    Article  CAS  PubMed  Google Scholar 

  • Krysan PJ, Young JC, Sussman MR (1999) T-DNA as an insertional mutagen in Arabidopsis. Plant Cell 11:2283–2290

    Article  CAS  PubMed  Google Scholar 

  • Kumagai H, Kouchi H (2003) Gene silencing by expression of hairpin RNA in Lotus japonicus roots and root nodules. Mol Plant Microbe Interact 16:663–668

    CAS  PubMed  Google Scholar 

  • Ladendorf O, Brachmann A, Kamper J (2003) Heterologous transposition in Ustilago maydis. Mol Genet Genomics 269:395–405

    Article  CAS  PubMed  Google Scholar 

  • Leal CV, Montes BA, Mesa AC, Rua AL, Corredor M, Restrepo A, McEwen JG (2004) Agrobacterium tumefaciens-mediated transformation of Paracoccidioides brasiliensis. Med Mycol 42:391–395

    Article  CAS  PubMed  Google Scholar 

  • Leclerque A, Wan H, Abschutz A, Chen S, Mitina GV, Zimmermann G, Schairer HU (2003) Agrobacterium-mediated insertional mutagenesis (AIM) of the entomopathogenic fungus Beauveria bassiana. Curr Genet 45:111–119

    Article  PubMed  Google Scholar 

  • Li M, Gong X, Zheng J, Jiang D, Fu Y, Hou M (2005) Transformation of Coniothyrium minitans, a parasite of Sclerotinia sclerotiorum, with Agrobacterium tumefaciens. FEMS Microbiol Lett 243:323–329

    Article  CAS  PubMed  Google Scholar 

  • Li Destri Nicosia MG, Brocard-Masson C, Demais S, Hua VA, Daboussi MJ, Scazzocchio C (2001) Heterologous transposition in Aspergillus nidulans. Mol Microbiol 39:1330–1344

    CAS  PubMed  Google Scholar 

  • Linnemannstons P, Vob T, Hedden P, Gaskin P, Tudzynski B (1999) Deletions in the gibberellin biosynthesis gene cluster of Gibberella fujikuroi by restriction enzyme-mediated integration and conventional transformation-mediated mutagenesis. Appl Environ Microbiol 65:2558–2564

    CAS  PubMed  Google Scholar 

  • Liu YG, Mitsukawa N, Oosumi T, Whittier RF (1995) Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J 8:457–463

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Cottrel TR, Pierini LM, Goldman WE, Doering TL (2002) RNA interference in the pathogenic fungus Cryptococcus neoformans. Genetics 160:463–470

    CAS  PubMed  Google Scholar 

  • Loppnau P, Tanguay P, Breuil C (2004) Isolation and disruption of the melanin pathway polyketide synthase gene of the softwood deep stain fungus Ceratocystis resinifera. Fungal Genet Biol 41:33–41

    Article  CAS  PubMed  Google Scholar 

  • Lu S, Lyngholm L, Yang G, Bronson C, Yoder OC, Turgen BG (1994) Tagged mutations at the Tox1 locus of Cochliobolus heterostrophus by restriction enzyme-mediated integration. Proc Natl Acad Sci USA 91:12649–12653

    CAS  PubMed  Google Scholar 

  • Maier FJ, Schafer W (1999) Mutagenesis via insertional- or restriction enzyme-mediated-integration (REMI) as a tool to tag pathogenicity related genes in plant pathogenic fungi. Biol Chem 380:855–864

    Article  CAS  PubMed  Google Scholar 

  • Malonek S, Meinhardt F (2001) Agrobacterium tumefaciens-mediated genetic transformation of the phytopathogenic ascomycete Calonectria morganii. Curr Genet 40:152–155

    Article  CAS  PubMed  Google Scholar 

  • Mannhaupt G, Montrone C, Haase D, Mewes HW, Aign V, Hoheisel JD, Fartmann B, Nyakatura G, Kempken F, Maier J, Schulte U (2003) What’s in the genome of a filamentous fungus? Analysis of the Neurospora genome sequence. Nucleic Acids Res 31:1944–1954

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto S, Ito Y, Hosoi T, Takahashi Y, Machida Y (1990) Integration of Agrobacterium T-DNA into a tobacco chromosome: possible involvement of DNA homology between T-DNA and plant DNA. Mol Gen Genet 224:309–316

    Article  CAS  PubMed  Google Scholar 

  • Matthysse AG (1983) Role of bacterial cellulose fibrils in Agrobacterium tumefaciens infection. J Bacteriol 154:906–915

    CAS  PubMed  Google Scholar 

  • Matthysse AG (1987) Characterization of nonattaching mutants of Agrobacterium tumefaciens. J Bacteriol 169:313–323

    CAS  PubMed  Google Scholar 

  • Meyer V, Mueller D, Strowig T, Stahl U (2003) Comparison of different transformation methods for Aspergillus giganteus. Curr Genet 43:371–377

    Article  CAS  PubMed  Google Scholar 

  • Michielse CB, Salim K, Ragas P, Ram AFJ, Kudla B, Jarry B, Punt PJ, Hondel CAMJJ van den (2004c) Development of a system for integrative and stable transformation of the zygomycete Rhizopus oryzae by Agrobacterium-mediated DNA transfer. Mol Gen Genomics 271:499–510

    Article  CAS  Google Scholar 

  • Michielse CB, Ram AFJ, Hooykaas PJJ, Hondel CAMJJ van den (2004a) Agrobacterium-mediated transformation of Aspergillus awamori in the absence of full length VirD2, VirC2 or VirE2 leads to insertion of aberrant T-DNA structures. J Bacteriol 186:2038–2045

    Article  CAS  PubMed  Google Scholar 

  • Michielse CB, Ram AFJ, Hooykaas PJJ, Hondel CAMJJ van den (2004b) Role of bacterial virulence proteins in Agrobacterium-mediated transformation of Aspergillus awamori. Fungal Genet Biol 45:571–578

    Article  Google Scholar 

  • Michielse CB, Arentshorst M, Ram AFJ, Hondel CAMJJ van den (2005) Agrobacterium-mediated transformation leads to improved gene replacement efficiency in Aspergillus awamori. Fungal Genet Biol 42:9–19

    Article  CAS  PubMed  Google Scholar 

  • Mikosch TS, Lavrijssen B, Sonnenberg AS, Griensven LJ van (2001) Transformation of the cultivated mushroom Agaricus bisporus (Lange) using T-DNA from Agrobacterium tumefaciens. Curr Genet 39:35–39

    Article  CAS  PubMed  Google Scholar 

  • Monfort A, Cordero L, Maicas S, Polaina J (2003) Transformation of Mucor miehei results in plasmid deletion and phenotypic instability. FEMS Microbiol Lett 224:101–106

    Article  CAS  PubMed  Google Scholar 

  • Mullins ED, Kang S (2001) Transformation: a tool for studying fungal pathogens of plants. Cell Mol Life Sci 58:2043–2052

    CAS  PubMed  Google Scholar 

  • Mullins ED, Chen X, Romaine P, Raina R, Geiser DM, Kang S (2001) Agrobacterium-mediated transformation of Fusarium oxysporum: an efficient tool for insertional mutagenesis and gene transfer. Phytopathology 91:173–180

    CAS  Google Scholar 

  • Nacry P, Camilleri C, Courtial B, Caboche M, Bouchez D (1998) Major chromosomal rearrangements induced by T-DNA transformation in Arabidopsis. Genetics 149:641–650

    CAS  PubMed  Google Scholar 

  • Nelson RT, Pryor BA, Lodge JK (2003) Sequence length required for homologous recombination in Cryptococcus neoformans. Fungal Genet Biol 38:1–9

    Article  CAS  PubMed  Google Scholar 

  • Ninomiya Y, Suzuki K, Ishii C, Inoue H (2004) Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining. Proc Natl Acad Sci USA 101:12248–11253

    Article  CAS  PubMed  Google Scholar 

  • Ochman H, Gerber AS, Hartl DL (1988) Genetic applications of an inverse polymerase chain reaction. Genetics 120:621–623

    CAS  PubMed  Google Scholar 

  • Ohba T, Yoshioka Y, Machida C, Machida Y (1995) DNA rearrangements associated with the integration of T-DNA in tobacco: an example for multiple duplications of DNA around the integration target. Plant J 7:157–164

    Article  CAS  PubMed  Google Scholar 

  • Pardo AG, Hanif M, Raudaskoski M, Gorfer M (2002) Genetic transformation of ectomycorrhizal fungi mediated by Agrobacterium tumefaciens. Mycol Res 106:132–137

    Article  CAS  Google Scholar 

  • Park S-M, Kim D-K (2004) Transformation of a filamentous fungus Cryphonectria parasitica using Agrobacterium tumefaciens. Biotechnol Bioprocess Eng 9:217–222

    CAS  Google Scholar 

  • Pereira A (2000) A transgenic perspective on plant functional genomics. Transgenic Res 9:245–260

    Article  CAS  PubMed  Google Scholar 

  • Piano F, Schetter AJ, Mangone M, Stein L, Kemphues KJ (2000) RNAi analysis of genes expressed in the ovary of Caenorhabditis elegans. Curr Biol 10:1619–1622

    Article  CAS  PubMed  Google Scholar 

  • Piers KL, Heath JD, Liang X, Stephens KM, Nester EW (1996) Agrobacterium tumefaciens-mediated transformation of yeast. Proc Natl Acad Sci USA 93:1613–1618

    Article  CAS  PubMed  Google Scholar 

  • Regensburg-Tuink AJ, Hooykaas PJ (1993) Transgenic N. glauca plants expressing bacterial virulence gene virF are converted into hosts for nopaline strains of A. tumefaciens. Nature 36369–36371

  • Rho HS, Kang S, Lee YH (2001) Agrobacterium tumefaciens-mediated transformation of the plant pathogenic fungus, Magnaporthe grisea. Mol Cells 12:407–411

    CAS  PubMed  Google Scholar 

  • Roberts RL, Metz M, Monks DE, Mullaney ML, Hall T, Nester EW (2003) Purine synthesis and increased Agrobacterium tumefaciens transformation of yeast and plants. Proc Natl Acad Sci USA 100:6634–6639

    Article  CAS  PubMed  Google Scholar 

  • Rogers CW, Challen MP, Green, JR, Whipps JM (2004) Use of REMI and Agrobacterium-mediated transformation to identify pathogenicity mutants of the biocontrol fungus, Coniothyrium minitans. FEMS Microbiol Lett 241:207–214

    Article  CAS  PubMed  Google Scholar 

  • Rolland S, Jobic C, Fevre M, Bruel C (2003) Agrobacterium-mediated transformation of Botrytis cinerea, simple purification of monokaryotic transformants and rapid conidia-based identification of the transfer-DNA host genomic DNA flanking sequences. Curr Genet 44:164–171

    Article  CAS  PubMed  Google Scholar 

  • Rossi L, Hohn B, Tinland B (1993) The VirD2 protein of Agrobacterium tumefaciens carries nuclear localization signals important for transfer of T-DNA to plant. Mol Gen Genet 239:345–353

    Article  CAS  PubMed  Google Scholar 

  • Rossi L, Hohn B, Tinland B (1996) Integration of complete transferred DNA units is dependent on the activity of virulence E2 protein of Agrobacterium tumefaciens. Proc Natl Acad Sci USA 93:126–130

    Article  CAS  PubMed  Google Scholar 

  • Rosso MG, Li Y, Strizhov N, Reiss B, Dekker K, Weisshaar B (2003) An Arabidopsis thaliana T-DNA mutagenized population (GABI-Kat) for flanking sequence tag-based reverse genetics. Plant Mol Biol 53:247–259

    Article  CAS  PubMed  Google Scholar 

  • Salas MG, Park SH, Srivatanakul M, Smith RH (2002) Temperature influence on stable T-DNA integration in plant cells. Plant Cell Rep 2001:701–705

    Google Scholar 

  • Schaefer DG (2001) Gene targeting in Physcomitrella patens. Curr Opin Plant Biol 4:143–150

    Article  CAS  PubMed  Google Scholar 

  • Schrammeijer B, Dulk-Ras A, Vergunst AC, Jurado JE, Hooykaas PJ (2003) Analysis of Vir protein translocation from Agrobacterium tumefaciens using Saccharomyces cerevisiae as a model: evidence for transport of a novel effector protein VirE3. Nucleic Acids Res 31:860–868

    Article  CAS  PubMed  Google Scholar 

  • Simmer F, Moorman C, Linden AM van der, Kuijk E, Berghe PV van den, Kamath R, Fraser AG, Ahringer J, Plasterk RH (2003) Genome-wide RNAi of C. elegans using the hypersensitive rrf-3 strain reveals novel gene functions. PLoS Biol 1:e12

    Article  PubMed  Google Scholar 

  • Simon JR, Moore PD (1987) Homologous recombination between single-stranded DNA and chromosomal genes in Saccharomyces cerevisiae. Mol Cell Biol 7:2329–2334

    CAS  PubMed  Google Scholar 

  • Sims AH, Robson GD, Hoyle DC, Oliver SG, Turner G, Prade RA, Russell HH, Dunn-Coleman NS, Gent ME (2004) Use of expressed sequence tag analysis and cDNA microarrays of the filamentous fungus Aspergillus nidulans. Fungal Genet Biol 41:199–212

    Article  CAS  PubMed  Google Scholar 

  • Singer T, Burke E (2003) High-throughput TAIL-PCR as a tool to identify DNA flanking insertions. Methods Mol Biol 236:241–272

    CAS  PubMed  Google Scholar 

  • Stachel SE, Nester EW (1986) The genetic and transcriptional organization of the vir region of the A6 Ti plasmid of Agrobacterium tumefaciens. EMBO J 5:1445–1454

    CAS  PubMed  Google Scholar 

  • Stafford HA (2000) Crown gall disease and Agrobacterium tumefaciens: a study of the history, present knowledge, missing information, and impact on molecular genetics. Bot Rev 66:101–118

    Google Scholar 

  • Sullivan TD, Rooney PJ, Klein BS (2002) Agrobacterium tumefaciens integrates transfer DNA into single chromosomal sites of dimorphic fungi and yields homokaryotic progeny from multinucleate yeast. Eukaryot Cell 1:895–905

    Article  CAS  PubMed  Google Scholar 

  • Sweigard JA, Carroll AM, Farrall L, Chumley FG, Valent B (1998) Magnaporthe grisea pathogenicity genes obtained through insertional mutagenesis. Mol Plant Microbe Interact 11:404–412

    CAS  PubMed  Google Scholar 

  • Takahara H, Tsuji G, Kubo Y, Yamamoto M, Toyoda K, Inagaki Y, Ichinose Y, Shiraishi T (2004) Agrobacterium tumefaciens-mediated transformation as a tool for random mutagenesis of Colletotrichum trifolii. J Gen Plant Pathol 70:93–96

    Article  CAS  Google Scholar 

  • Takano M, Egawa H, Ikeda JE, Wakasa K (1997) The structures of integration sites in transgenic rice. Plant J 11:353–361

    Article  CAS  PubMed  Google Scholar 

  • Takken FL, Wijk R van, Michielse CB, Houterman PM, Ram AF, Cornelissen BJ (2004) A one-step method to convert vectors into binary vectors suited for Agrobacterium-mediated transformation. Curr Genet 45:242–248

    Article  CAS  PubMed  Google Scholar 

  • Tanguay P, Breuil C (2003) Transforming the sapstaining fungus Ophiostoma piceae with Agrobacterium tumefaciens. Can J Microbiol 49:301–304

    Article  CAS  PubMed  Google Scholar 

  • Toro N, Datta A, Yanofsky M, Nester E (1988) Role of the overdrive sequence in T-DNA border cleavage in Agrobacterium. Proc Natl Acad Sci USA 85:8558–8562

    CAS  PubMed  Google Scholar 

  • Tsuji G, Fujii S, Fujihara N, Hirose C, Tsuge S, Shiraishi T, Kubo Y (2003) Agrobacterium tumefaciens-mediated transformation for random insertional mutagenesis in Colletotrichum lagenarium. J Gen Plant Pathol 69:230–239

    Article  CAS  Google Scholar 

  • Tzfira T, Citovsky V (2002) Partners-in-infection: host proteins involved in the transformation of plant cells by Agrobacterium. Trends Cell Biol 12:121–129

    Article  CAS  PubMed  Google Scholar 

  • Tzfira T, Rhee Y, Chen MH, Kunik T, Citovsky V (2000) Nucleic acid transport in plant-microbe interactions: the molecules that walk through the walls. Annu Rev Microbiol 54:187–219

    Article  CAS  PubMed  Google Scholar 

  • Tzfira T, Vaidya M, Citovsky V (2002) Increasing plant susceptibility to Agrobacterium infection by over-expression of the Arabidopsis nuclear protein VIP1. Proc Natl Acad Sci USA 99:10435–10440

    Article  CAS  PubMed  Google Scholar 

  • Veluthambi K, Ream W, Gelvin SB (1988) Virulence genes, borders, and overdrive generate single-stranded T-DNA molecules from the A6 Ti plasmid of Agrobacterium tumefaciens. J Bacteriol 170:1523–1532

    CAS  PubMed  Google Scholar 

  • Vergunst AC, Schrammeijer B, Den Dulk A, Vlaam CMT de, Regensburg-Tuink AJ, Hooykaas PJ (2000) VirB/D4-dependent protein translocation from Agrobacterium into plant cells. Science 290:979–982

    Article  CAS  PubMed  Google Scholar 

  • Vergunst AC, Lier MC van, Dulk-Ras A, Hooykaas PJ (2003) Recognition of the Agrobacterium tumefaciens VirE2 translocation signal by the VirB/D4 transport system does not require VirE1. Plant Physiol 133:978–988

    Article  CAS  PubMed  Google Scholar 

  • Versaw WK, Metzenberg RL (1996) Activator-independent gene expression in Neurospora crassa. Genetics 142:417–423

    CAS  PubMed  Google Scholar 

  • Vijn I, Govers F (2003) Agrobacterium tumefaciens mediated transformation of the oomycete plant pathogen Phytophthora infestans. Mol Plant Pathol 4:459–467

    Article  CAS  Google Scholar 

  • Wach A, Brachat A, Pohlmann R, Philippsen P (1994) New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10:1793–1808

    CAS  PubMed  Google Scholar 

  • Wendland J (2003) PCR-based methods facilitate targeted gene manipulations and cloning procedures. Curr Genet 44:115–123

    Article  CAS  PubMed  Google Scholar 

  • Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B, Bangham R, Benito R, Boeke JD, Bussey H, Chu AM, Connelly C, Davis K, Dietrich F, Dow SW, El Bakkoury M, Foury F, Friend SH, Gentalen E, Giaever G, Hegemann JH, Jones T, Laub M, Liao H, Davis RW (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285:901–906

    Article  CAS  PubMed  Google Scholar 

  • Zeilinger S (2003) Gene disruption in Trichoderma atroviride via Agrobacterium-mediated transformation. Curr Genet 45:54–60

    Article  PubMed  Google Scholar 

  • Zhang A, Lu P, Dahl-Roshak AM, Paress PS, Kennedy S, Tkacz JS, An Z (2003) Efficient disruption of a polyketide synthase gene (pks1) required for melanin synthesis through Agrobacterium-mediated transformation of Glarea lozoyensis. Mol Genet Genomics 268:645–655

    CAS  PubMed  Google Scholar 

  • Zhu J, Oger PM, Schrammeijer B, Hooykaas PJ, Farrand SK, Winans SC (2000) The bases of crown gall tumorigenesis. J Bacteriol 182:3885–3895

    Article  CAS  PubMed  Google Scholar 

  • Zupan J, Muth TR, Draper O, Zambryski P (2000) The transfer of DNA from Agrobacterium tumefaciens into plants: a feast of fundamental insights. Plant J 23:11–28

    Article  CAS  PubMed  Google Scholar 

  • Zwiers LH, De Waard MA (2001) Efficient Agrobacterium tumefaciens-mediated gene disruption in the phytopathogen Mycosphaerella graminicola. Curr Genet 39:388–393

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Cardoza, M. Challen, B. Donzelli, S. Gutierrez, T. Heinekamp, H. Khanh, Y. Lee, C. Rogers, J. Skov, J. Kan, and K. Welzel for their consent to use their data that were presented at the 21st and 22nd FGC (Asilomar, USA), at ECFG6 (Pisa, Italy), and/or at ECFG7 (Copenhagen, Denmark). We thank V. Garre, G. Gay, J. Gomez-Mateo, S. Covert, M. Rep, M. Furlaneto, K. Plummer, S. Kang, A. Idnurm, D. Gardiner, J.F. Martin, and P. Tudzynski for sharing their unpublished data and discussion. We also thank Patricia vanKuyk and Jaap Visser for critically reading this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur F. J. Ram.

Additional information

Communicated by J. Heitman

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michielse, C.B., Hooykaas, P.J.J., van den Hondel, C.A.M.J.J. et al. Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Curr Genet 48, 1–17 (2005). https://doi.org/10.1007/s00294-005-0578-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-005-0578-0

Keywords

Navigation