Skip to main content
Log in

Grafting of tea waste with polyacrylic acid and its potential applications

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The indigenous materials such as tea waste were exploited as antimicrobial adsorbent for removing heavy metal ions. It was well known that tea waste was characterized with biodegradability and environmental-friendly product. Grafting copolymerization of acrylic acid onto tea waste was carried out using gamma radiation. The effects of solvent, dose and feeding concentration of acrylic acid have been investigated to achieve the optimum conditions. Grating (%) ranged from 30 to 70 for DMSO and H2O, respectively. The grafted tea waste was characterized by Fourier transform infrared (FTIR) spectroscopy, swelling study, scanning electron microscopy (SEM) and energy dispersive spectrometry X-rays (EDS). The grafted samples were used in waste water treatment to remove heavy metal ions (Cr3+, Pb2+ and Hg2+). The highest adsorption capacity was 35 and 200 mg/g of Hg+2 ions for ungrafted and grafted samples, respectively. The results showed that the selectivity among these metal ions is different onto tea waste-graft-polyacrylic acid. The grafted tea waste samples, which complexed with Cr3+, Pb2+ and Hg2+ ions, were found to have antimicrobial features. Therefore, they could be used as adsorbent in removing heavy metal ions with antimicrobial features as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Pour ZS, Ghaemy M (2015) Removal of dyes and heavy metal ions from water by magnetic hydrogel beads based on poly(vinyl alcohol)/carboxymethyl starch-g-poly(vinyl imidazole). RSC Adv 5:64106

    Article  Google Scholar 

  2. Qian H, Zhou Z, Zhang L, Wu F, Zhang Q, Zhang Z (2013) Thermodynamic analysis on the theoretical energy consumption of seawater desalination. Desalination 320:73

    Article  CAS  Google Scholar 

  3. Boo C, Elimelech M, Hong S (2013) Fouling control in a forward osmosis process integrating seawater desalination and wastewater reclamation. J Membr Sci 444:148

    Article  CAS  Google Scholar 

  4. Kara A, Tekin N, Alan A, Şafaklı A (2013) Physicochemical parameters of Hg(II) ions adsorption from aqueous solution by sepiolite/poly(vinylimidazole). J Environ Chem Eng 4:1642

    Article  Google Scholar 

  5. Yuan J-M, Koh WP, Lee H-P, Yu MC (2007) Green tea and black tea consumption in relation to colorectal cancer risk: the Singapore Chinese Health Study. Carcinogenesis 28:2143

    Article  Google Scholar 

  6. Vandenbossche M, Jimenez M, Casetta M, Bellayer S, Beaurain A, Bourbigot S, Traisnel M (2013) Chitosan-grafted nonwoven geotextile for heavy metals sorption in sediments. React Funct Polym 73:53

    Article  CAS  Google Scholar 

  7. Reddy KR, Nakata K, Ochiai T, Murakami T, Tryk DA, Akira Fujishima A (2011) Facile Fabrication and Photocatalytic Application of Ag Nanoparticles-TiO2 Nanofiber Composites. J Nanosci Nanotechnol 4:3692

    Article  Google Scholar 

  8. Saravanan D, Gomathi T, Sudha PN (2013) Sorption studies on heavy metal removal using chitin/bentonite biocomposite. Int J Biol Macromol 53:67

    Article  CAS  Google Scholar 

  9. Isobe N, Chen X, Kim UJ, Kimura S, Wada M, Saito T, Isogai A (2013) TEMPO-oxidized cellulose hydrogel as a high-capacity and reusable heavy metal ion adsorbent. J Hazard Mater 260:195

    Article  CAS  Google Scholar 

  10. Reddy KR, Karthik KV, Prasad SB, Soni SK, Jeong HM, Raghu AV (2016) Enhanced photocatalytic activity of nanostructured titanium dioxide/polyaniline hybrid photocatalysts. Polyhedron 120:169

    Article  CAS  Google Scholar 

  11. Xu Y, Zhang Y, Feng Q (2013) The dynamic adsorption performance of the cross-linked starch/acrylonitrile graft copolymer for copper ions in water. Colloids Surf A 430:8

    Article  CAS  Google Scholar 

  12. Mondal MK (2010) Removal of Pb(II) from aqueous solution by adsorption using activated tea waste. Korean J Chem Eng 27:144

    Article  CAS  Google Scholar 

  13. Febrianto J, Kosasih AN, Sunarso J, Ju YH, Indraswati N, Ismadji S (2009) Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies. J Hazard Mater 162:616

    Article  CAS  Google Scholar 

  14. Sud D, Mahajan G, Kaur MP (2008) Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions—A review. Bioresour Technol 99:6017

    Article  CAS  Google Scholar 

  15. Amarasinghe BMWPK, Williams RA (1997) Tea waste as a low cost adsorbent for the removal of Cu and Pb from wastewater. Chem Eng J 132:299

    Article  Google Scholar 

  16. Ahluwalia SS, Goyal D (2005) Removal of heavy metals by waste tea leaves from aqueous solution. Eng Life Sci 5:158

    Article  CAS  Google Scholar 

  17. Demirbas A (2008) Heavy metal adsorption onto agro-based waste materials: a review. J Hazard Mater 157:220

    Article  CAS  Google Scholar 

  18. Raghava KR, Hassan M, Gomes VG (2015) Hybrid nanostructures based on titanium dioxide for enhanced photocatalysis. Appl Catal A Gen 489:1

    Article  Google Scholar 

  19. Goel NK, Kumar V, Dubey KA, Bhardwaj YK, Varshney L (2013) Development of functional adsorbent from PU foam waste via radiation induced grafting I: process parameter standardization. Radiat Phys Chem 82:85

    Article  CAS  Google Scholar 

  20. Samart C, Yoosuk B, Kongparakul S, Wichaita W (2015) Cellulose graft poly(acrylic acid) and polyacrylamide: grafting efficiency and heavy metal adsorption performance. Macromol Symp 354:84

    Article  Google Scholar 

  21. Reddy KR, Lee K-P, Kim JY, Lee Y (2008) Self-assembly and graft polymerization route to monodispersed Fe3O4-SiO2—polyaniline core–shell composite nanoparticles: physical properties. Nanosci Nanotechnol 8:5632

    Article  CAS  Google Scholar 

  22. Ahmad M, Ahmed S, Swami BL, Ikram S (2015) Preparation and characterization of antibacterial thiosemicarbazide chitosan as efficient Cu(II) adsorbent. Carbohydr Polym 132:164

    Article  CAS  Google Scholar 

  23. Brunel F, Gueddari NEE, Moerschbacher BM (2013) Complexation of copper(II) with chitosan nanogels: toward control of microbial growth. Carbohydr Polym 92:1348

    Article  CAS  Google Scholar 

  24. Farnum GA, Murray NH, LaDuca RL (2013) Parallel chain polyrotaxane, layer, and diamondoid divalent metal coordination polymers containing para aromatic dicarboxylate and bis(4-pyridylmethyl)piperazine ligands. Inorg Chim Acta 406:65

    Article  CAS  Google Scholar 

  25. Qiblawi SH, Sposato LK, LaDuca RL (2013) Chain, layer, and self-penetrated copper dipyridylamine coordination polymers with conformationally flexible ring-based dicarboxylate ligands. Inorg Chim Acta 407:297

    Article  CAS  Google Scholar 

  26. Dhankar RP, Rahatgaonkar AM, Chorghade MS, Tiwari A (2012) Spectral and in vitro antimicrobial properties of 2-oxo-4-phenyl-6-styryl-1,2,3,4-tetrahydro-pyrimidine-5-carboxylic acid transition metal complexes. Spectrochim Acta Part A 93:348

    Article  CAS  Google Scholar 

  27. Miftah U, Reddy KR, Snguanwongch T, Haque E, Gomes VG (2016) Polymer brush synthesis on surface modified carbon nanotubes via in situ emulsion polymerization. Colloid Polym Sci 294:1599

    Article  Google Scholar 

  28. Reddy KR, Gomes VG, Hassan M (2014) Carbon functionalized TiO2 nanofibers for high efficiency photocatalysis. Mater Res Expr 1:015012

    Article  Google Scholar 

  29. Božić D, Gorgievski M, Stanković V, Štrbac N, Šerbula S, Petrović N (2013) Adsorption of heavy metal ions by beech sawdust—Kinetics, mechanism and equilibrium of the process. Ecol Eng 58:202

    Article  Google Scholar 

  30. Geraldes AN, Zen HA, Ribeiro G, Parra DF, Lugão AB (2013) Solvent effect on post-irradiation grafting of styrene onto poly(ethylene-alt-tetrafluoroethylene) (ETFE) films. Radiat Phys Chem 84:205

    Article  CAS  Google Scholar 

  31. Jung ST, Kim DY, Kim HB, Jeun JP, Oh SH, Lee BJ, Kang PH (2013) Enhanced solvent resistance of acrylonitrile–butadiene rubber by electron beam irradiation. J Ind Eng Chem 19:566

    Article  CAS  Google Scholar 

  32. Madrid JF, Nuesca GM, Abad LV (2013) Gamma radiation-induced grafting of glycidyl methacrylate (GMA) onto water hyacinth fibers. Radiat Phys Chem 85:182

    Article  CAS  Google Scholar 

  33. Lv X, Song W, Ti Y, Qu L, Zhao Z, Zheng H (2013) Gamma radiation-induced grafting of acrylamide and dimethyl diallyl ammonium chloride onto starch. Carbohydr Polym 92:388

    Article  CAS  Google Scholar 

  34. Anirudhan TS, Nima J, Divya PL (2013) Adsorption of chromium(VI) from aqueous solutions by glycidylmethacrylate-grafted-densified cellulose with quaternary ammonium groups. Appl Surf Sci 279:441

    Article  CAS  Google Scholar 

  35. Ramana DKV, Reddy DHK, Yu JS, Seshaiah K (2012) Pigeon peas hulls waste as potential adsorbent for removal of Pb(II) and Ni(II) from water. Chem Eng J 197:24

    Article  Google Scholar 

  36. Reddy KR, Sin BC, Sun Ryu KS, Kim J-C, Chung H, Lee Y (2009) Conducting polymer functionalized multi-walled carbon nanotubes with noble metal nanoparticles: synthesis, morphological characteristics and electrical properties. Synth Metal 159:595

    Article  CAS  Google Scholar 

  37. Velghe I, Carleer R, Yperman J, Schreurs S, D’Haen J (2012) Characterisation of adsorbents prepared by pyrolysis of sludge and sludge/disposal filter cake mix. Water Res 46:2783

    Article  CAS  Google Scholar 

  38. Gupta VK, Pathania D, Sharma S, Agarwal S, Singh P (2013) Remediation of noxious chromium (VI) utilizing acrylic acid grafted lignocellulosic adsorbent. J Mol Liq 177:343

    Article  CAS  Google Scholar 

  39. Khan MI, Khan A, Hussain I, Khan MA, Gul S, Iqbal M, Rahman IU, Khuda F (2013) Spectral, XRD, SEM and biological properties of new mononuclear Schiff base transition metal complexes. Inorg Chem Commun 35:104

    Article  CAS  Google Scholar 

  40. Gao C, Yu X-Y, Xu R-X, Liu J-H, Huan X-J (2012) AlOOH-reduced graphene oxide nanocomposites: one-pot hydrothermal synthesis and their enhanced electrochemical activity for heavy metal ions. ACS Appl Mater Interfaces 4:4672

    Article  CAS  Google Scholar 

  41. Selvi K, Pattabhi S, Kadirvelu K (2001) Removal of Cr(VI) from aqueous solution by adsorption onto activated carbon. Bioresour Technol 80:87

    Article  CAS  Google Scholar 

  42. Li YH, Wang S, Wei J, Zhang X, Xu C, Luan Z, Wu D, Wei B (2002) Lead adsorption on carbon nanotubes. Chem Phys Lett 357:263

    Article  CAS  Google Scholar 

  43. Calero M, Hernainze F, Blazquez G, Martin Lara MA, Tenorio G (2009) Biosorption kinetics of Cd (II), Cr(III), and Pb(II) in aqueous solutions by olive stone. Braz J Chem Eng 26:265

    Article  CAS  Google Scholar 

  44. Dwivedi MK, Jain N, Sharma P, Alawa C (2015) Adsorption of safranin from wastewater using coal fly ash. IOSR-JAC 8:27

    CAS  Google Scholar 

  45. Meunier N, Laroulandie J, Blais JF, Tyagi RD (2003) Cocoa shells for heavy metal removal from acidic solutions. Bioresour Technol 90:255

    Article  CAS  Google Scholar 

  46. Vinodhini V, Das N (2009) Mechanism of Cr(VI) biosorption by neem sawdust. J Sci Res 4:324

    CAS  Google Scholar 

  47. Asrari E, Tavallali H, Hagshenas M (2010) Removal of Zn(II) and Pb(II) ions using rice husk in food industrial wastewater. J Appl Sci Environ Manag 14:159

    Google Scholar 

  48. Gilbert UA, Emmanuel IU, Adebanjo AA, Olalere GA (2011) Biosorptive removal of Pb(II) and Cd(II) onto novel biosorbent: defatted Carica papaya seeds. Biomass Bioenerg 35:2517

    Article  Google Scholar 

  49. Gupta S, Babu BV (2009) Removal of toxic metal Cr(VI) from aqueous solutions using sawdust as adsorbent: equilibrium, kinetics and regeneration studies. Chem Eng J 150:352

    Article  CAS  Google Scholar 

  50. Kurniawan A, Sisnandy VOA, Trilestari K, Sunarso J, Indraswati N, Ismadji S (2011) Performance of durian shell waste as high capacity biosorbent for Cr(VI) removal from synthetic wastewater. Ecol Eng 37:940

    Article  Google Scholar 

Download references

Acknowledgements

Many thanks are due to Mona M.K. Shehata (Doctor of Microbiology in National Centre for Radiation Research and Technology) for her helpful work on the carrying out the antimicrobial test on samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Awadallah-F.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 322 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awadallah-F, A., Naguib, H.F. Grafting of tea waste with polyacrylic acid and its potential applications. Polym. Bull. 74, 4659–4679 (2017). https://doi.org/10.1007/s00289-017-1981-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-1981-7

Keywords

Navigation