Skip to main content

Advertisement

Log in

Bioplastics Starch-Based with Additional Fiber and Nanoparticle: Characteristics and Biodegradation Performance: A Review

  • Review
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Plastics are widely used by the community, especially as food packaging. In general, plastic raw materials are polymers which have advantages including good mechanical properties, cheap, lightweight and easy in the process of manufacture and application. However, there are still many plastic shortcomings, one of them is not easily biodegradable. Therefore, scientists and other stakeholders have shown great concern to overcome the accumulation of non-biodegradable plastics in the environment by develop plastic biodegradable. Bioplastics are one of the candidates in the highest trend because they are generally biodegradable, use natural resources and can reduce environmental pollution. Starch-based bioplastics are a popular material in the manufacture of bioplastics. However, due to it’s low mechanical properties, over time natural fibers are added which are claimed to increase the strength of bioplastics and accelerate the degradation process in the soil. The addition of nanoparticles is also done quickly because the application of inorganic polymers can increase the stiffness and tensile strength of resulting bioplastic. So, in this review we describe the characteristics and biodegradation performance of several starch-based biodegradable plastics added with fibers and nanoparticles and this review expected to contribute in the future to make bioplastics which aims to take it easier for determine the material components to be used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Heincke DG, Martinez I, Standing M, Gallegos C, Partal P (2017) Improvement of mechanical and water absorption properties of plant protein based bioplastics. Food Hydrocoll 73:21–29

    Article  CAS  Google Scholar 

  2. Navina R, Sharma S, Gupta A, Alashwal BY (2018) Keratin based bioplastic film from chicken feathers and its characterization. Int J Biol Macromol 111:352–358

    Article  CAS  Google Scholar 

  3. Geyer R, Jambeck JR, Law KL (2017) Production, use, and fate of all plastics ever. Sci Adv 3(7):E1700782

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Amni C, Ismet, ApriliaMariana S, Akbar SA (2020) Mechanical properties of bioplastics janeng starch (Dioscorea hispida) film with glycerol and zinc oxide as reinforcement. Rasayan J Chem 13(1):275–281

    Article  Google Scholar 

  5. Karan H, Funk C, Grabert M, Oey M, Hankamer B (2018) Review green bioplastics as part of a circular bioeconomy. Trends Plant Sci 24(3):237

    Article  CAS  Google Scholar 

  6. Arifa S, Tahir A, Mahmood A, Tabinda AB, Yasar A, Pugazhendhi A (2020) A review on environmental significance carbon foot prints of starch based bio-plastic: a substitute of conventional plastics. Biocatal Agric Biotechnol 27:101540

    Article  Google Scholar 

  7. Zhang R, Wang X, Cheng M (2018) Preparation and characterization of potato starch film with various size of nano-SiO2. Polymers 10(10):1172

    Article  PubMed Central  CAS  Google Scholar 

  8. Bergel BF, da Luz LM, Santana RMC (2017) Comparative study of the influence of chitosan as coating of thermoplastic starch foam from potato, cassava and corn starch. Prog Org Coat 106:27–32

    Article  CAS  Google Scholar 

  9. Podshivalov A, Zakharova M, Glazacheva E, Uspenskaya M (2017) Gelatin/ potato starch edible biocomposite films: correlation between morphology and physical properties. Carbohydr Polym 157:1162–1172

    Article  CAS  PubMed  Google Scholar 

  10. Luchese CL, Spada JC, Tessaro IC (2017) Starch content affects physicochemical properties of corn and cassava starch-based films. Ind Crops Prod 109:619–626

    Article  CAS  Google Scholar 

  11. Domene-López D, Delgado-Marín JJ, Martin-Gullon I, García-Quesada JC, Montalbán MG (2019) Comparative study on properties of starch films obtained from potato, corn and wheat using 1-ethyl-3-methylimidazolium acetate as plasticizer. Int J Biol Macromol 135:845–854

    Article  PubMed  CAS  Google Scholar 

  12. Santana RF, Bonomo RCF, Gandolfi ORR, Rodrigues LB, Santos LS, dos Santos Pires AC (2018) Characterization of starch-based bioplastics from jackfruit seed plasticized with glycerol. J Food Sci Technol 55(1):278–286

    Article  CAS  PubMed  Google Scholar 

  13. Prakashkumar N, Ramalingam T, Thajuddin N, Shanmuganathan R, Pugazhendhi A, Natarajan S (2020) Polyherbal drug loaded starch nanoparticles as promising drug delivery system: antimicrobial antibiofilm and neuroprotective studies. Proces Biochem 92:355–364

    Article  CAS  Google Scholar 

  14. Kant BS, Otari SV, Jong-MinJeon RG, Choi Y-K, Bhatia RK, Pugazhendhi A, Vinod Kumar J, Banu R, Yoon J-J, Kwon-YoungChoi Y-H (2021) Biowaste-to-bioplastic (polyhydroxyalkanoates): CONVERSION TECHNOLOGIES, STRATEGIES, CHALLENGES AND PERSPEctive. Biores Technol 326:124733

    Article  CAS  Google Scholar 

  15. Zhang CW, Li FY, Li JF, Wang LM, Xie Q, Xu J, Chen S (2017) A New biodegradable composite with open cell by combining modified starch and plant fibers. Mater Des 120:222–229

    Article  CAS  Google Scholar 

  16. Saleh AA, Saleh MA, Al Haron MH, Farag M (2017) insights into the effect of moisture absorption and fiber content on the mechanical behavior of starch-date palm fiber composites. Starch-Stärke 69(7–8):1–8

    Google Scholar 

  17. Ghanbari A, Tabarsa T, Ashori A, Shakeri A, Mashkour M (2018) Preparation and characterization of thermoplastic starch and cellulose nanofibers as green nanocomposites: extrusion processing. Int J Biol Macromol 112:442–447

    Article  CAS  PubMed  Google Scholar 

  18. Noshirvani N, Ghanbarzadeh B, Rezaei Mokarram R, Hashemi M (2017) Novel active packaging based on carboxymethyl cellulose-chitosan-ZnO NPs nanocomposite for increasing the shelf life of bread. Food Packag Shelf Life 11:106–114

    Article  Google Scholar 

  19. De Azevedo LC, Rovani S, Santos JJ, Dias DB, Nascimento SS, Oliveira FF et al (2020) Biodegradable films derived from corn and potato starch and study of the effect of silicate extracted from sugarcane waste ash. ACS Appl Polym Mater 2(6):2160–2169

    Article  CAS  Google Scholar 

  20. Amin MR, Chowdhury MA, Kowser MA (2019) Characterization and performance analysis of composite bioplastics synthesized using titanium dioxide nanoparticles with corn starch. Heliyon 5:2405–8440

    Article  Google Scholar 

  21. Fena Retyo Titani, Haryanto, (2018) The Effect Of Nano-Zinc Oxide And Titanium Dioxide On The Properties Of Bioplastic. Proceedings of 43rd Research World International Conference, Singapore

  22. Dawale SA, Bhagat MM (2018) Preparation and characterization of potato starch based film blended with CaCO3 nanoparticles. Int J Eng Sci Comput 8(2):16013–16016

    Google Scholar 

  23. Patel H, Seshadri S, Parvathi JR (2017) Edible bioplastic with natural pH indicators. Int J Curr Microbiol App Sci 6:1569–15727

    Article  CAS  Google Scholar 

  24. Zoungranan Y, Lynda E, Dobi-Brice KK, Tchirioua E, Bakary C, Yannick DD (2020) Influence of natural factors on the biodegradation of simple and composite bioplastics based on cassava starch and corn starch. J Environ Chem Eng 8:104396

    Article  CAS  Google Scholar 

  25. Sultan NFK, Johari WLW (2017) The development of banana peel/corn starch bioplastic film: a preliminary study. Bioremediat Sci Technol Res 5(1):12–17

    Article  Google Scholar 

  26. Fabra MJ, Martínez-Sanz M, Gómez-Mascaraque LG, Gavara R, López-Rubio A (2018) Structural and physicochemical characterization of thermoplastic corn starch films containing microalgae. Carbohydr Polymer 186:184–191

    Article  CAS  Google Scholar 

  27. Kochkina NE, Lukin ND (2020) Structure and properties of biodegradable maize starch/chitosan composite films as affected by PVA additions. Int J Biol Macromol 157:377–384

    Article  CAS  PubMed  Google Scholar 

  28. Oluwasina OO, Olaleye FK, Olusegun SJ, Oluwasina OO, Mohallem NDS (2019) Influence of oxidized starch on physicomechanical, thermal properties, and atomic force micrographs of cassava starch bioplastic film. Int J Biol Macromol 135:282–293

    Article  CAS  PubMed  Google Scholar 

  29. Paula TA, Lamsal B, Magalhães WLE, Demiate IM (2019) Cassava starch films reinforced with lignocellulose nanofibers from cassava bagasse. Int J Biol Macromol 139:1151–1161

    Article  CAS  Google Scholar 

  30. Syafri E, Kasim A, Abral H, Asben A (2017) Effect of precipitated calcium carbonate on physical, mechanical and thermal properties of cassava starch bioplastic composites. Int J Adv Sci Eng Inf Technol 7(5):1950–1956

    Article  Google Scholar 

  31. La Fuente CIA, Tamyris A, de Souza CC, Tadini PE, Augusto D (2019) Ozonation of cassava starch to produce biodegradable films. Int J Biol Macromol 141:713–720

    Article  PubMed  CAS  Google Scholar 

  32. Ayala VG, Luciano CG, Lourenço RV, Sobral PJA (2018) Microstructure and physical properties of nano-biocomposite films based on cassava starch and laponite. Int J Biol Macromol 107(1):1576–1583

    Google Scholar 

  33. Abdullah Akbar HD, Putri OD, Fikriyyah AK, Nissa RC, Hidayat S, Septiyanto RF, Karina M, Satoto R (2020) Harnessing the excellent mechanical, barrier and antimicrobial properties of zinc oxide (ZnO) to improve the performance of starch-based bioplastic. Polymer-Plast Technol Mater 59(12):1259–1267

    Article  CAS  Google Scholar 

  34. Mochamad A, Sapuan SM, Ilyas RA, Ramesh M (2020) Characteristic of composite bioplastics from tapioca starch and sugarcane bagasse fiber: effect of time duration of ultrasonication (bath-type). Mater Today. https://doi.org/10.1016/j.matpr.2020.07.254

    Article  Google Scholar 

  35. Hilda R, Mutmainna I, Ilyas S, Fahri AN, Wahyuni ASH, Afrianti E, Setiawan I, Tahir D (2020) Effect of carbon for enhancing degradation and mechanical properties of bioplastics composite cassava starch/glycerin/carbon. AIP Conf Proc 2219:100004

    Google Scholar 

  36. Eko WN, Suryanto H (2017) Analysis of biodegradation of bioplastics made of cassava starch. J Mech Eng Sci Technol 1(1):24–31

    Google Scholar 

  37. Arifa S, Al-Zaqri N, Tahir A, Alsalme A (2021) Synthesis and characterization of starch based bioplatics using varying plant-based ingredients, plasticizers and natural fillers. Saudi J Biol Sci 28:1739–1749

    Article  CAS  Google Scholar 

  38. Karua CS, Sahoo A (2020) Synthesis and characterization of starch/chitosan composites. Mater Today 33(8):5179–5183

    CAS  Google Scholar 

  39. Sapei L, Padmawijaya KS, Sijayanti O, Wardhana PJ (2017) Study of the influence of Zno addition on the properties of chitosan-banana starch bioplastics. IOP Conf Ser 223:012044

    Article  Google Scholar 

  40. Lovepreet K, Dhull SB, Kumar P, Singh A (2020) Banana starch: properties, description, and modified variations—a review. Int J Biol Macromol 165(B):2096–2102

    Google Scholar 

  41. Maria PF, Andrade-Mahecha MM, do Amaral Sobral PJ, Menegalli FC (2017) Nanocomposites based on banana starch reinforced with cellulose nanofibers isolated from banana peels. J Colloid Interface Sci 505:154–167

    Article  CAS  Google Scholar 

  42. Abrala H, Basria A, Muhammada F, Fernandoa Y, Hafizulhaqa F, Mahardikaa M, Eni Sugiartib SM, Sapuanc RAI, Stephaned I (2019) A simple method for improving the properties of the sago starch films prepared by using ultrasonication treatment. Food Hydrocolloids 93:276–283

    Article  CAS  Google Scholar 

  43. Lusiana SW, Putri D, Nurazizah IZ, Bahruddin B (2019) Bioplastic properties of sago-PVA starch with glycerol and sorbitol plasticizers. J Phys 1351:012102

    CAS  Google Scholar 

  44. Mohd ZZA, Akam NF, Dose D, Syauwye A, Ahmad RA, Yusoff Z (2017) Biodegradable plastics from sago starch. J Mech Eng Dep 1(1):0126–9313

    Google Scholar 

  45. Jangong OS, Gareso PL, Mutmainna I, Tahir D (2019) Fabrication and characterization starch/chitosan reinforced polypropylene as biodegradable. J Phys 1341:082022

    CAS  Google Scholar 

  46. Fabjola B, Pandini S, Sartore L, Depero LE, Gargiulo G, Bonassi A, Federici S, Bontempi E (2018) A sustainable bioplastic obtained from rice straw. J Clean Prod 200:357–368

    Article  CAS  Google Scholar 

  47. Sain M (2020) Production of bioplastics and sustainable packaging materials from rice straw to eradicate stubble burning: a mini-review. Environ Conserv J 21(3):1–5

    Article  Google Scholar 

  48. Amal E, Faisal M, D’Angelo G, Aboulkhair NT, Everitt NM, Fahim IS (2020) Valorisation of shrimp and rice straw waste into food packaging applications. Ain Shams Eng J 11(4):1219–1226

    Article  Google Scholar 

  49. Kaimeng Xu, Liu C, Kang K, Zheng Z, Wang S, Tang Z, Yang W (2017) Isolation of nanocrystalline cellulose from rice straw and preparation of its biocomposites with chitosan: physicochemical characterization and evaluation on interfacial compatibility. Compos Sci Technol 154:8–17

    Google Scholar 

  50. Sagnelli D, Hooshmand K, Kemmer GC, Kirkensgaard JJK, Mortensen K, Concetta Valeria L, Giosafatto MH, Hebelstrup KH, Bao J, Stelte W, Bjerre A-B, Blennow A (2017) Cross-linked amylose bio-plastic: a transgenic-based compostable plastic alternative. Int J Mol Sci 18:2075

    Article  PubMed Central  CAS  Google Scholar 

  51. Harunsyah, Yunus M, Fauzan R (2017) Mechanical properties of bioplastics cassava starch film with zinc oxide nanofiller as reinforcement. IOP Conf Ser 210:012015

    Article  Google Scholar 

  52. Isbeth C-R, Martínez-Cruz O, Toro-Sánchez CLD, Wong-Corral FJ, Borboa-Flores J, Cinco-Moroyoqui FJ (2018) The structural characteristics of starches and their functional properties. J Food 16(1):1003–1017

    Google Scholar 

  53. Judawisastra H, Sitohang RDR, Marta L (2017) Water absorption and its effect on the tensile properties of tapioca starch/ polyvinyl alcohol bioplastics. IOP Conf Ser Mater Sci Eng 223(1):012066

    Article  Google Scholar 

  54. Fragassa C (2017) Marine applications of natural fibre-reinforced composites: a manufacturing case study. Adv App Ind Biomater. https://doi.org/10.1007/978-3-319-62767-0_2

    Article  Google Scholar 

  55. Jaramillo-Quiceno Natalia J, Manuel Vélez R, Cadena EM, Ch A-O, Felipe Santa J (2018) Improvement of mechanical properties of pineapple leaf fibers by mercerization process. Fibers Polymers 19(12):2604–2611

    Article  CAS  Google Scholar 

  56. Preetha B, Sreekala MS, Kunaverc M, Huski M, Thomasa S (2017) Morphology, transport characteristics and viscoelastic polymer chainconfinement in nanocomposites based on thermoplastic potato starchand cellulose nanofibers from pineapple leaf. Carbohydr Polym 169:176–188

    Article  CAS  Google Scholar 

  57. Mutmainna I, Tahir D, Gareso PL, Ilyas S, Saludung A (2019) Improving degradation ability of composite starch/chitosan by additional pineapple leaf microfibers for food packaging applications. IOP Conf Ser 593:012024

    Article  CAS  Google Scholar 

  58. Jamiluddin J, Siregar JP, Oumer AN, Mohammad HM, Hamdan CT, Salit MS (2018) Experimental investigation on performance of short pineapple leaf fiber reinforced tapioca biopolymer composites. BioResources 13(3):6341–6355

    Article  Google Scholar 

  59. Bellal HM, Sahadat Hossain Md, Nahid AM, Bari S, Khan RA (2018) Fabrication and characterization of pineapple fiber-reinforced polypropylene based composites. Nano Hybrids Compos 21:31–42

    Article  Google Scholar 

  60. Oliveira GG, Maria Carolina AT, Felipe Perissé DL, Carlos Maurício FV, Frederico MM, de Almeida Gomes M, Monteiro SN (2017) Tensile strength of polyester composites reinforced with PALF. J Mater Res Technol. https://doi.org/10.1016/j.jmrt.2017.09.003

    Article  Google Scholar 

  61. Yeng-Fong S, Tsou Z-G, Wang C-H, Lian H-Y (2018) Eco-friendly modification for the cellulose nanofibers derived from pineapple leaves for high-performance nanocomposite. IOP Conf Ser 171:012041

    Article  Google Scholar 

  62. Santosha PV, Sa SSGA, Manikanth V (2018) Effect of fiber loading on thermal properties of banana and pineapple leaf fiber reinforced polyester composites. Mater Today 5:5631–5635

    CAS  Google Scholar 

  63. Ramengmawii S, Jawaid M, Ariffin H, Sapuan SM (2018) Mechanical, dynamic, and thermo mechanical properties of coir/pineapple leaf fiber reinforced polylactic acid hybrid biocomposites. Polym Compos. https://doi.org/10.1002/pc.24978

    Article  Google Scholar 

  64. Amalia B, Imawana C, Listyarini A (2018) Effect of nanofibril cellulose isolated from pineapple leaf on the mechanical properties of chitosan film. AIP Conf Proc 2023:020034

    Article  CAS  Google Scholar 

  65. Sahadat HM, Uddin MB, Md Razzak AM, Chowdhury S, Ruhul AK (2017) fabrication and characterization of jute fabrics reinforced polypropylene-based composites: effects of ionizing radiation and disaccharide (sucrose). Radiat Eff Defects Solids 172(11–12):904–914

    Article  CAS  Google Scholar 

  66. Gloria GO, Altoé GR, Gomes MA, Vieira CMF, Teles MCA, Margem FM (2017) Izod toughness behavior of continuous PALF reinforced polyester matrix composites. Characterization of minerals, metals and materials. Springer, Switzerland, pp 41–47

    Google Scholar 

  67. Parul S, Gupta MK (2017) Sisal (Agave sisalana) fiber and its polymer-based composites: a review on current developments. J Reinf Plast Compos 36(24):1759–1780

    Article  CAS  Google Scholar 

  68. Bo L, Feng Y (2020) Sustainable thermoplastic bio-based materials from sisal fibers. J Clean Prod 265:121631

    Article  CAS  Google Scholar 

  69. Dhaduti Sandeep C, Shridhar HB, Mathad SN (2019) Preparation and analysis of mechanical properties of short sisal and glass fiber reinforced composite. Int J Adv Sci Eng 5(3):1009–1016

    Article  Google Scholar 

  70. Almusawi AM, Hussein TS, Shallal MA (2018) Effect of temperature and sisal fiber content on the properties of plaster of Paris. Int J Eng Technol 7(420):205–208

    Article  CAS  Google Scholar 

  71. Fu S, Yu B, Tang W, Fan M, Chen F, Fu Q (2018) Mechanical properties of polypropylene composites reinforced by hydrolyzed and micro-fibrillated kevlar fibers. Compos Sci Technol 163:141–150

    Article  CAS  Google Scholar 

  72. Nayak NN, Reddappa HN, Suresh R, Kumar R (2019) The effect of reinforcing sisal fibers on the mechanical and thermal properties of polypropylene composites. J Mater Environ Sci 10(12):1238–1249

    CAS  Google Scholar 

  73. Munde Yashwant S, Ingle RB, Siva I (2019) Effect of sisal fiber loading on mechanical, morphological and thermal properties of extruded polypropylene composites. Mater Res Express 6:085307

    Article  CAS  Google Scholar 

  74. Saurabh C, Singh I, Song JI (2019) Recyclability analysis of PLA/sisal fiber BIocomposites. Compos B 173:106895

    Article  CAS  Google Scholar 

  75. Yusof Fauziah Md, Wahab N‘, Rahman NLA, Kalam A, Jumahat A, Taib CFM (2017) Properties of treated bamboo fiber reinforced tapioca starch biodegradable composite. Mater Today 16:2367–2373

    Google Scholar 

  76. Abdul Khalil HPS, Che Mohamad HCI, Khairunnisa AR, Owolabi FAT, Asniza M, Samsul Rizal, Nurul Fazita MR, Paridah MT (2018) Development and characterization of bamboo fiber reinforced biopolymer films. Mater Res Express 5:085309

  77. Nurnadia MJ, Nurul Fazita MR, Abdul Khalil HPS, Mohamad Haafiz MK (2017) Optimisation of mechanical properties of bamboo fiber reinforced-PLA biocomposites. AIP Conf Proc 1901:030019

    Article  CAS  Google Scholar 

  78. Shaoping Q, Zhang H, Yao W, Sheng K (2018) Effects of bamboo cellulose nanowhisker content on the morphology, crystallization, mechanical, and thermal properties of PLA matrix biocomposites. Compos Part B 133:203–209

    Article  CAS  Google Scholar 

  79. Ababu Mekete, Ebrahim Husen, Birhanu Awraris, Neseredin Bashawal (2021) Review of the applications and properties of bamboo fiber reinforced composite materials. Global Sci J 9(3)

  80. Mochamad Asrofi, Sapuan SM, Ilyas RA, Rames M (2020) Characteristic of composite bioplastics from tapioca starch and sugarcane bagasse fiber: effect of time duration of ultrasonication (Bath-Type). Mater Today: Proc. https://doi.org/10.1016/j.matpr.2020.07.254

  81. Rosa F-V, Camacho-Hernándeza IL, Martínez-Bustosb F, Islas-Rubioc AR, Carrillo-Cañedoa KI, Calderón-Castroa A, Jacobo-Valenzuelaa N, Carrillo-Lópeza A, Delgado-Nieblasa CI, Aguilar-Palazuelosa E (2019) Mechanical, physical and microstructural properties of acetylated starchbased biocomposites reinforced with acetylated sugarcane fiber. Carbohydr Polym 219:378–386

    Article  CAS  Google Scholar 

  82. Mulinari DR, oyce de Paula Cipriano, Maria Rosa Capri, Amanda Torres Brandão (2017) Influence of surgarcane bagasse fibers with modified surface on polypropylene composites. J Nat Fibers 15(2):174–182

  83. Colussi R, Pinto VZ, El Halal SLM, Biduski B, Prietto L, Castilhos DD, Dias ARG (2017) Acetylated rice starches films with different levels of amylose: mechanical, water vapor barrier, thermal and biodegradability properties. Food Chem 221:614–1620

    Article  CAS  Google Scholar 

  84. Huda MASN, Mohd HNAB, Nor MSM (2020) Development and characterization of food packaging bioplastic film from cocoa pod husk cellulose incorporated with sugarcane bagasse fibre. J Bioresour Bioprod 5:248–255

    Article  CAS  Google Scholar 

  85. Syafri E, Jamaluddina SW, Irwan A, Asrof M, Sari NH, Fudholi A (2019) Characterization and properties of cellulose microfibers from water hyacinth filled sago starch biocomposites. Int J Biol Macromol 137:119–125

    Article  CAS  PubMed  Google Scholar 

  86. Lenz DM, Tedesco DM, Camani PH, dos Santos RD (2018) Multiple reprocessing cycles of corn starch-based biocomposites reinforced with curauá fiber. J Polym Environ 26(7):3005

    Article  CAS  Google Scholar 

  87. Agustin YE, Padmawijaya KS (2017) Effect of glycerol and zinc oxide addition on antibacterial activity of biodegradable bioplastics from chitosan-kepok banana peel starch. IOP Conf Ser 223:012046

    Article  Google Scholar 

  88. de Azêvedo LC, Rovani S, Santos JJ, Dias DB, Nascimento SS, Oliveira FF, Silva LGA, Fungaro DA (2020) Study of renewable silica powder influence in the preparation of bioplastics from corn and potato starch. J Polym Environ. https://doi.org/10.1007/s10924-020-01911-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dahlang Tahir.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anugrahwidya, R., Armynah, B. & Tahir, D. Bioplastics Starch-Based with Additional Fiber and Nanoparticle: Characteristics and Biodegradation Performance: A Review. J Polym Environ 29, 3459–3476 (2021). https://doi.org/10.1007/s10924-021-02152-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02152-z

Keywords

Navigation