Skip to main content
Log in

RAFT synthesis of poly(2-dimethylaminoethyl methacrylate) three-arm star polymers for the preparation of gold nanoparticles

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this work, the preparation of poly(2-(dimethylamino)ethyl methacrylate) (PDMAEM) star polymers using reversible addition–fragmentation chain transfer (RAFT) polymerization, is reported. A trifunctional trithiocarbonate was used and the core was part of th e R group (leaving group) of the RAFT chain transfer agent. The R-core RAFT star polymerizations of PDMAEM showed excellent molecular weight control up to very high monomer conversions. PDMAEM-star polymer-protected gold nanoparticles (AuNPs) were prepared in the absence of any other reducing agent at 40 and 65 °C in aqueous solution. The AuNPs were sphere-like with a diameter of 5–8 nm, which was independent of the star polymer concentration and star polymer molecular weight. Furthermore, the behavior of the pH- and temperature-sensitive AuNPs-star-PDMAEM was studied in aqueous solution by measuring the lower critical solution temperature (LCST) by dynamic light scattering. The measurements were performed at pH values of 8.4, and 10.5. By varying the pH, the LCST can be easily tuned between 35 and 43 °C. The AuNPs show remarkable stability in water; this was demonstrated by monitoring absorbance of AuNPs over regular time periods within 4 months.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Goh TK, Coventry KD, Blencowe A, Qiao GG (2008) Rheology of core cross-linked star polymers. Polymer 49:5095–5104

    Article  CAS  Google Scholar 

  2. Sugimoto M, Koizumi T, Taniguchi T, Koyama K, Saito K, Nonokawa D, Morita T (2009) Melt rheology of hyperbranched-polystyrene synthesized with multisite macromonomer. J Polym Sci Part B Polym Phys 47:2226–2237

    Article  CAS  Google Scholar 

  3. Heise A, Hedrick JL, Frank CW, Miller RD (1999) Starlike block copolymers with amphiphilic arms as models for unimolecular micelles. J Am Chem Soc 121:8647–8648

    Article  CAS  Google Scholar 

  4. Kreutzer G, Ternat C, Nguyen TQ, Plummer CJ, Manson JAE, Castelletto V, Hamley IW, Sun F, Sheiko SS, Herrmann A, Ouali L, Sommer H, Fieber W, Velazco MI, Klok HA (2006) Water-soluble, unimolecular containers based on amphiphilic multiarm star block copolymers. Macromolecules 39:4507–4516

    Article  CAS  Google Scholar 

  5. Liu HB, Jiang AN, Guo J, Uhrich KE (1999) Unimolecular micelles: synthesis and characterization of amphiphilic polymer systems. J Polym Sci Part A Polym Chem 37:703–711

    Article  CAS  Google Scholar 

  6. Baek KY, Kamigaito M, Sawamoto M (2001) Star-shaped polymers by metal-catalyzed living radical polymerization. 1. Design of Ru(II)-based systems and divinyl linking agents. Macromolecules 34:215–221

    Article  CAS  Google Scholar 

  7. Limer AJ, Rullay AK, San Miguel V, Peinado C, Keely S, Fitzpatrick E, Carrington SD, Brayden D, Haddleton DM (2006) Fluorescently tagged star polymers by living radical polymerisation for mucoadhesion and bioadhesion. React Funct Polym 66:51–64

    Article  CAS  Google Scholar 

  8. Shi X, Zhou W, Qiu Q, Zesheng A (2012) Amphiphilic heteroarm star polymer synthesized by RAFT dispersion polymerization in water/ethanol solution. Chem Commun 48:7389–7391

    Article  CAS  Google Scholar 

  9. Cheng F, Bonder EM, Doshi A, Jäkle F (2012) Organoboron star polymers via arm-first RAFT polymerization: synthesis, luminescent behavior, and aqueous self-assembly. Polym Chem 3:596–600

    Article  CAS  Google Scholar 

  10. Boschmann D, Vana P (2005) Poly(vinyl acetate) and poly(vinyl propionate) star polymers via reversible addition fragmentation chain transfer (RAFT) polymerization. Polym Bull 53:231–242

    Article  CAS  Google Scholar 

  11. Mayadunne RTA, Jeffery J, Moad G, Rizzardo E (2003) Living free radical polymerization with reversible addition–fragmentation chain transfer (RAFT polymerization): approaches to star polymers. Macromolecules 36:1505–1513

    Article  CAS  Google Scholar 

  12. Boschmann D, Vana P (2007) Z-RAFT star polymerizations of acrylates: star coupling via intermolecular chain transfer to polymer. Macromolecules 40:2683–2693

    Article  CAS  Google Scholar 

  13. Whittaker MR, Monteiro MJ (2006) Synthesis and aggregation behavior of four-arm star amphiphilic block copolymers in water. Langmuir 22:9746–9752

    Article  CAS  Google Scholar 

  14. Barner-Kowollik C, Davis TP, Stenzel MH (2006) Synthesis of star polymers using RAFT polymerization: what is possible? Aust J Chem 59:719–727

    Article  CAS  Google Scholar 

  15. Bian Q, Xiao Y, Lang M (2012) R-RAFT approach for the polymerization of N-isopropylacrylamide with a star poly(ε-Caprolactone) core. J Polym Sci Part A Polym Chem 50:571–580

    Article  CAS  Google Scholar 

  16. Herfurth C, Malo de Molina P, Wieland C, Sarah R, Gradzielski M, Laschewsky A (2012) One-step RAFT synthesis of well-defined amphiphilic star polymers and their self-assembly in aqueous solution. Polym Chem 3:1606

    Article  CAS  Google Scholar 

  17. Sakai T, Alexandridis P (2004) Single-step synthesis and stabilization of metal nanoparticles in aqueous pluronic block copolymer solutions at ambient temperature. Langmuir 20:8426

    Article  CAS  Google Scholar 

  18. Kan C, Cai W, Li C, Zhang L (2005) Optical studies of polyvinylpyrrolidone reduction effect on free and complex metal ions. J Mater Res 20:320–324

    Article  CAS  Google Scholar 

  19. Kemal L, Jiang XC, Wong K, Yu AB (2008) Experiment and theoretical study of poly(vinyl pyrrolidone)-controlled gold nanoparticles. J Phys Chem C 112:15656–15664

    Article  CAS  Google Scholar 

  20. Hussain I, Graham S, Wang Z, Tan B, Sherrington DC, Rannard SP, Cooper AI, Brust M (2005) Size-controlled synthesis of near-monodisperse gold nanoparticles in the 1–4 nm range using polymeric stabilizers. J Am Chem Soc 127:16398–16399

    Article  CAS  Google Scholar 

  21. Astruc DMC (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  Google Scholar 

  22. Parak WJ, Gerion D, Pellegrino T, Zanchet D, Micheel C, Williams SC, Boudreau R, Le Gros MA, Larabell CA, Alivisatos AP (2003) Biological applications of colloidal nanocrystals. Nanotechnology 14:R15–R27

    Article  CAS  Google Scholar 

  23. Mayer ABR, Mark JE (1998) Colloidal gold nanoparticles protected by water-soluble homopolymers and random copolymers. Eur Polym J 34:103

    Article  CAS  Google Scholar 

  24. Bronstein LM, Gourkova SN, Sidorov AY, Valetsky PM, Hartmann J, Breulmann M, Colfen H, Antonietti M (1998) Interaction of metal compounds with ‘double-hydrophilic’ block copolymers in aqueous medium and metal colloid formation. Inorg Chim Acta 280:348–354

    Article  CAS  Google Scholar 

  25. Huang X, Xiao Y, Zhang W, Lang M (2012) In-situ formation of silver nanoparticles stabilized by amphiphilic star-shaped copolymer and their catalytic application. Appl Surf Sci 258:2655–2660

    Article  CAS  Google Scholar 

  26. Gohy JF, Creutz S, Garcia M, Mahtig B, Stamm M, Jeröme R (2000) Aggregates formed by amphoteric diblock copolymers in water. Macromolecules 33:6378–6387

    Article  CAS  Google Scholar 

  27. Anderson BC, Mallapragada SK (2002) Synthesis and characterization of injectable, water-soluble copolymers of tertiary amine methacrylates and poly(ethylene glycol) containing methacrylates. Biomaterials 23:4345–4352

    Article  CAS  Google Scholar 

  28. Demosthenous E, Hadjiyannakou SC, Vamvakaki M, Patrickios CS (2002) Synthesis and characterization of polyampholytic model networks: effects of polymer composition and architecture. Macromolecules 35:2252–2260

    Article  CAS  Google Scholar 

  29. Sun H, Gao Z, Yang L, Gao L, Lv X (2010) Synthesis and characterization of novel four-arm star PDMAEMA-stabilized colloidal silver nanoparticles. Colloid Polym Sci 288:1713–1722

    Article  CAS  Google Scholar 

  30. Bütün V, Armes SP, Billingham NC (2001) Synthesis and aqueous solution properties of near-monodisperse tertiary amine methacrylate homopolymers and diblock copolymers. Polymer 42:5993–6008

    Article  Google Scholar 

  31. Van de Wetering P, Moret EE, Schuurmans-Nieuwenbroek MNE, van Steenbergen MJ, Hennink EWE (1999) Structure-activity relationships of water-soluble cationic methacrylate/methacrylamide polymers for nonviral gene delivery. Bioconjugate Chem 10:589–597

    Article  Google Scholar 

  32. Gao C, Liu M, Chen J, Chen C (2012) Physicochemical characterization and drug release properties of PDMAEMA/OSA Semi-IPN hydrogels with microporous structure. Polym Adv Technol 23:389–397

    Article  CAS  Google Scholar 

  33. Lin Z, Dong-Hua X, Zhen-Xin W (2008) Gold nanoparticle-based colorimetric sensor for pH sensing. Chem Res Chin Univ 24:537–540

    Article  Google Scholar 

  34. Rawlinson LB, Ryan SM, Mantovani G, Syrett JA, Haddleton DM, Brayden DJ (2010) Antibacterial effects of poly(2-(dimethylamino ethyl)methacrylate) against selected gram-positive and gram-negative bacteria. Biomacromolecules 11:443–453

    Article  CAS  Google Scholar 

  35. Cho SH, Jhon MS, Yuk SH, Lee HB (1997) Temperature-induced phase transition of poly(N, N-dimethylaminoethyl methacrylate-co-acrylamide). J Polym Sci Part B Polym Phys 35:595–598

    Article  CAS  Google Scholar 

  36. Duwez AS, Guillet P, Colard C, Gohy JF, Fustin CA (2006) Dithioesters and trithiocarbonates as anchoring groups for the “Grafting-To” approach. Macromolecules 39:2729–2731

    Article  CAS  Google Scholar 

  37. Chaffey-Millar H, Stenzel MH, Davis TP, Coote ML, Barner-Kowollik C (2006) Design criteria for star polymer formation processes via living free radical polymerization. Macromolecules 39:6406–6419

    Article  CAS  Google Scholar 

  38. Chen WF, Fan XD, Huang Y, Liu YY, Sun L (2009) Synthesis and characterization of a pentaerythritol-based amphiphilic star block copolymer and its application in controlled drug release. React Funct Polym 69:97–104

    Article  CAS  Google Scholar 

  39. Li J, Ren J, Cao Y, Yuan W (2010) Synthesis of biodegradable pentaarmed star-block copolymers via an asymmetric BIS-TRIS core by combination of ROP and RAFT: from star architectures to double responsive micelles. Polymer 51:1301–1310

    Article  CAS  Google Scholar 

  40. Manson J, Kumar D, Meenan BJ, Dixon D (2011) Polyethylene glycol functionalized gold nanoparticles: the influence of capping density on stability in various media. Gold Bull 44:99–105

    Article  CAS  Google Scholar 

  41. Dhumale VA, Gangwar RK, Datarm SS, Sharma RB (2012) Reversible aggregation control of polyvinylpyrrolidone capped gold nanoparticles as a function of pH. Mater Express 2:311–318

    Article  CAS  Google Scholar 

  42. Hoppe CE, Lazzari M, Pardiñas-Blanco I, López-Quintela MA (2006) One-step synthesis of gold and silver hydrosols using poly(N-vinyl-2-pyrrolidone) as a reducing agent. Langmuir 22:7027–7034

    Article  CAS  Google Scholar 

  43. Mössmer S, Spatz JP, Moller M (2000) Solution behavior of poly(styrene)-block-poly(2-vinylpyridine) micelles containing gold nanoparticles. Macromolecules 33:4791–4798

    Article  Google Scholar 

  44. Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298:2176–2179

    Article  CAS  Google Scholar 

  45. Chou K, Lai YS (2004) Effect of polyvinyl pyrrolidone molecular weights on the formation of nanosized silver colloids. Mater Chem Phys 83:82–88

    Article  CAS  Google Scholar 

  46. Wei GD, Deng YC, Nan CW (2003) Self-organized formation of chainlike silver nanostructure with fractal geometry. Chem Phys Lett 367:512–515

    Article  CAS  Google Scholar 

  47. Sakai T, Alexandridis P (2004) Single-step synthesis and stabilization of metal nanoparticles in aqueous pluronic block copolymer solutions at ambient temperature. Langmuir 20:8426–8430

    Article  CAS  Google Scholar 

  48. Bao Y, Shen G, Liu H, Li Y (2013) Fabrication of gold nanoparticles through autoreduction of chloroaurate ions by thermo- and pH-responsive amino acid-based star-shaped copolymers. Polymer 54:652–660

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We kindly appreciate the support of Mr. Francisco Ruiz-Medina from the Center of Nanoscience and Nanotechnology of UNAM (Ensenada-México) for TEM images. This work was supported by the CONACYT National Network of Nanoscience and Nanotechnology and by the Dirección General de Educación Superior Tecnológica (DGEST) of México through grants 5159.13-P and 5156.13-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norma A. Cortez-Lemus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cortez-Lemus, N.A., Licea-Claverie, A. RAFT synthesis of poly(2-dimethylaminoethyl methacrylate) three-arm star polymers for the preparation of gold nanoparticles. Polym. Bull. 71, 1757–1772 (2014). https://doi.org/10.1007/s00289-014-1153-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-014-1153-y

Keywords

Navigation