Skip to main content
Log in

Temperature triggered aggregation toward nanoparticles formation from tri-arm poly(HEAAm-b-NIPAAm) in aqueous solutions

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Multi-arm block copolymers with stimuli-responsive behavior are a potential candidate in the field of nanoscience and nanotechnology due to their unique design, specific property-regulating ability and appealing applications. Here, tri-arm star diblock copolymers, poly(2-hydroxyethylacrylamide)-block-poly(N-isopropylacrylamide), P(HEAAm–b–NIPAAm) consisting of PHEAAm and PNIPAAm as inner and outer blocks were synthesized via two-step ATRP. The synthesized polymers were characterized using ATR-IR, 1H-NMR and GPC techniques. It is revealed that introducing a higher number repeating units (300) of HEAAm into copolymers could facilitate the formation of micelles in the cross-linked points and the occurrence of phase transition at higher temperatures. DLS measurements prove that tri-arm block copolymer with the lower number repeating units (50) of HEAAm core could not prevent random aggregation, whereas longer PHEAAm300 core produces ca. 200 nm aggregate steadily at the adjoining knot at above LCST. Lowering of UV–Vis absorbance at 40 °C proved the entrapment of Rhodamin B into PNIPAAm300 aggregates. Atomic force microscopy image of P(HEAAm300b–NIPAAm21) shows a loop (network structure) with the terminal PNIPAAm consistent aggregate size ca. 237 ± 42 nm.

Graphical abstract

(A) Schematic chemical structure of tri-arm poly(HEAAm-b-NIPAAm) diblock copolymer, (B) AFM image of nanoparticles formation, (C) nanoparticles distribution in aqueous solution at 34 °C (LCST) and at 50 °C, and (D) aggregation and expansion mechanism

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Parlok O, Ashaduzzaman M, Kollipara SB, Tiwari A, Turner APF (2015) Switchable bioelectrocatalysis controlled by dual stimuli responsible polymeric interface. ACS Appl Mater Interfaces 7:23837–23847. https://doi.org/10.1021/acsami.5b06048

    Article  CAS  Google Scholar 

  2. Mishra S, Ashaduzzaman M, Mishra P, Swart HC, Turner APF, Tiwari A (2017) Stimuli-enabled zipper-like grapheme interface for auto-switchable bioelectronics. Biosens Bioelectron 89:305–311. https://doi.org/10.1016/j.bios.2016.03.052

    Article  CAS  PubMed  Google Scholar 

  3. Dutta K, De S (2017) Smart responsive materials for water purification: an overview. J Mater Chem A 5:22095–22112. https://doi.org/10.1039/C7TA07054C

    Article  CAS  Google Scholar 

  4. Huang H, Qi X, Chen Y, Wu Z (2019) Thermosensitive hydrogels for delivering biotherapeutic molecules: a review. Saudi Pharm J 27:990–999. https://doi.org/10.1016/j.jsps.2019.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang X, Shen W, Dou J, Meng Y, Fang S, Liu R (2019) Enhanced mechanical properties and self-healing behavior of PNIPAM nanocomposite hydrogels by using POSS as a physical crosslinker. J Appl Polym Sci 137:48486. https://doi.org/10.1002/app.48486

    Article  CAS  Google Scholar 

  6. Huang Z-S, Shiu J-W, Way T-F, Rwei S-P (2019) A thermo-responsive random copolymer of poly(NIPAm-co-FMA) for smart textile applications. Polymer 184:121917. https://doi.org/10.1016/j.polymer.2019.121917

    Article  CAS  Google Scholar 

  7. Elella MHA, Aamer N, Mohamed YMA, Nazer HAE, Mohamed RR (2022) Innovation of high-performance adsorbent based on modified gelatin for wastewater treatment. Polym Bull. https://doi.org/10.1007/s00289-022-04079-4

    Article  Google Scholar 

  8. Elella MHA, Shalan AE, Sabaa MW, Mohamed RR (2022) One-pot green synthesis of antimicrobial chitosan derivative nanocomposites to control foodborne pathogens. RSC Adv 12:1095–1104. https://doi.org/10.1039/D1RA07070C

    Article  PubMed  PubMed Central  Google Scholar 

  9. Abu-Thabit NY, Uwaezuoke OJ, Elella MHA (2022) Superhydrophobic nanohybrid sponges for separation of oil/water mixtures. Chemosphere 294:133644. https://doi.org/10.1016/j.chemosphere.2022.133644

    Article  CAS  PubMed  Google Scholar 

  10. Goda ES, Elella MHA, Hong SE, Pandit B, Yoon KR, Gamal H (2021) Smart flame retardant coating containing carboxymethyl chitosan nanoparticles decorated graphene for obtaining multifunctional textiles. Cellulose 28:5087–5105. https://doi.org/10.1007/s10570-021-03833-7

    Article  CAS  Google Scholar 

  11. Elella MHA, Goda ES, Yoon KR, Hong SE, Morsy MS, Sadak RA, Gamal H (2021) Novel vapor polymerization for integrating flame retardant textile with multifunctional properties. Compos Commun 24:100614. https://doi.org/10.1016/j.coco.2020.100614

    Article  Google Scholar 

  12. Elella MHA, Goda ES, Gab-Allah MA, Hong SE, Pandit B, Lee S, Gamal H, Rehman AU, Yoon KR (2021) Xanthan gum-derived materials for applications in environment and eco-friendly materials: a review. J Environ Chem Eng 9:104702. https://doi.org/10.1016/j.jece.2020.104702

    Article  CAS  Google Scholar 

  13. Pandit B, Goda ES, Elella MHA, Rehman AU, Hong SE, Rondiya SR, Barkataki P, Shaikh SF, Al-Enizi AM, El-Bahy SM, Yoon KR (2022) One-pot hydrothermal preparation of hierarchical manganese oxide nanorods for high-performance symmetric supercapacitors. J Energy Chem 65:116–126. https://doi.org/10.1016/j.jechem.2021.05.028

    Article  CAS  Google Scholar 

  14. Kotsuchibashi Y, Yamamoto K, Aoyagi T (2009) Assembly behavior of double thermo-responsive block copolymers with controlled response temperature in aqueous solution. J Colloid Interface Sci 336:67–72. https://doi.org/10.1016/j.jcis.2009.03.093

    Article  CAS  PubMed  Google Scholar 

  15. Chen Y, Sone M, Fuchise K, Sakai R, Kakuchi R, Duan Q, Sun J, Narumi A, Satoh T, Kakuchi T (2009) Structural effect of a series of block copolymers consisting of poly(N-isopropylacrylamide) and poly(N-hydroxyethylacrylamide) on thermoresponsive behavior. React Funct Polym 69:463–469. https://doi.org/10.1016/j.reactfunctpolym.2008.12.016

    Article  CAS  Google Scholar 

  16. Cao Z, Liu W, Ye G, Zhao X, Lin X, Gao P, Yao K (2006) N-isopropylacrylamide/2-hydroxyethyl methacrylate star diblock copolymers: synthesis and thermoresponsive behavior. Macromol Chem Phys 207:2329–2335. https://doi.org/10.1002/macp.200600365

    Article  CAS  Google Scholar 

  17. Xu FJ, Zhu Y, Liu FS, Nie J, Ma J, Yang WT (2010) Comb-shaped conjugates comprising hydroxypropylcellulose backbones and low-molecular-weight poly(N-isopropylacryamide) side chains for smart hydrogels: synthesis, characterization, and biomedical applications. Bioconjugate Chem 21:456–464. https://doi.org/10.1021/bc900337p

    Article  CAS  Google Scholar 

  18. Liu S, Armes SP (2003) Synthesis and aqueous solution behavior of a pH-responsive schizophrenic diblock copolymer. Langmuir 19:4432–4438. https://doi.org/10.1021/la020951l

    Article  CAS  Google Scholar 

  19. Ashaduzzaman M, Kai S, Uemura S, Kunitake M (2011) Synthesis and aqueous dispersion properties of triarmpoly(NIPAAm-b-HEAAm) diblock copolymers. Chem Lett 40:165–167. https://doi.org/10.1246/cl.2011.165

    Article  CAS  Google Scholar 

  20. Wang H, An Y, Huang N, Ma R, Shi L (2008) Investigation of the cononsolvency effect on micellization behavior of polystyrene-b-poly(N-isopropylacrylamide). J Colloid Interface Sci 317:637–642. https://doi.org/10.1016/j.jcis.2007.09.063

    Article  CAS  PubMed  Google Scholar 

  21. Tang XD, Liang XC, Han NF (2009) Y-shaped block copolymers of poly(ethylene glycol) and poly(N-isopropylacrylamide) synthesized by ATRP. Chin Chem Lett 20:1353–1356. https://doi.org/10.1016/j.cclet.2009.06.007

    Article  CAS  Google Scholar 

  22. Strandman S, Zarembo A, Darinskii AA, Löflund B, Butcher SJ, Tenhu H (2007) Self-assembling of star-like amphiphilic block copolymers with polyelectrolyte blocks. Effect of pH. Polymer 48:7008–7016. https://doi.org/10.1016/j.polymer.2007.10.002

    Article  CAS  Google Scholar 

  23. Strandman S, Zarembo A, Darinskii AA, Laurinmäki P, Butcher SJ, Vuorimaa E, Lemmetyinen H, Tenhu H (2008) Effect of the number of arms on the association of amphiphilic star block copolymers. Macromolecules 41:8855–8864. https://doi.org/10.1021/ma801475p

    Article  CAS  Google Scholar 

  24. Lin D-S, Wu C-S, Hsu K-Y, Liu Y-L (2010) Preparation and properties of amphiphilic AB2 Y-shaped poly(styrene)-poly(N-isopropylacrylamide)2 copolymers through selective amidation and Michael additions reactions. React Funct Polym 70:596–601. https://doi.org/10.1016/j.reactfunctpolym.2010.06.003

    Article  CAS  Google Scholar 

  25. Li Y-Y, Zhang X-Z, Cheng H, Kim G-C, Cheng S-X, Zhuo R-X (2006) Novel stimuli-responsive micelle self-assembled from Y-shaped P(UA-Y-NIPAAm) copolymer for drug delivery. Biomacromol 7:2956–2960. https://doi.org/10.1021/bm060080k

    Article  CAS  Google Scholar 

  26. Li J, He W-D, Han S-CN, Sun X-L, Li-Y Li, Zhang B-Y (2009) Synthesis and micellization of PSt-PNIPAM-PDMAEMA hetero-arm star polymer with double thermo-responsibility. J Polym Sci Part A Polym Chem 47:786–796. https://doi.org/10.1002/pola.23195

    Article  CAS  Google Scholar 

  27. Lin H-H, Cheng Y-L (2001) In-situ thermoreversible gelation of block and star copolymers of poly(ethylene glycol) and poly(N-isopropylacrylamide) of varying architectures. Macromolecules 34:3710–3715. https://doi.org/10.1021/ma001852m

    Article  CAS  Google Scholar 

  28. Pamies R, Zhu K, Kjoniksen A-L (2009) Thermal response of low molecular weight poly(N-isopropylacrylamide) polymers in aqueous solution. Polym Bull 62:487–502. https://doi.org/10.1007/s00289-008-0029-4

    Article  CAS  Google Scholar 

  29. Jain K, Vedarajan R, Watanabe M, Ishikiriyama M, Matsumi N (2015) Tunable LCST behavior of poly(N-isopropylacrylamide/ionic liquid)copolymers. Polym Chem 6:6819–6825. https://doi.org/10.1039/C5PY00998G

    Article  CAS  Google Scholar 

  30. Cortez-Lemus NA, Licea-Claverie A (2018) Preparation of a mini-library of thermo-responsive star (NVCL/NVP-VAc) polymers with tailored properties using a hexafunctional xanthate RAFT agent. Polymers 10(1):20. https://doi.org/10.3390/polym10010020

    Article  CAS  Google Scholar 

  31. Ugur S, Elaissari A, Yargi O, Pekcan O (2007) Reversible film formation from nano-sized PNIPAM particle below glass transition. Colloid Polym Sci 285:423–430. https://doi.org/10.1007/s00396-006-1584-6

    Article  CAS  Google Scholar 

  32. Aufderhorst-Roberts A, Baker D, Foster RJ, Cayre O, Mattsson J, Connell SD (2018) Nanoscale mechanics of microgel particles. Nanoscale 10:16050–16061. https://doi.org/10.1039/C8NR02911C

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was carried out without any financial assistance from any source. The authors are highly acknowledged to Professor Dr. Ashutosh Tiwari and Prasant Mishra for providing various instrumental aids.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Md. Shahidul Islam or Md. Ashaduzzaman.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabir, R., Hossain, M., Islam, M. et al. Temperature triggered aggregation toward nanoparticles formation from tri-arm poly(HEAAm-b-NIPAAm) in aqueous solutions. Polym. Bull. 80, 8585–8601 (2023). https://doi.org/10.1007/s00289-022-04477-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04477-8

Keywords

Navigation