Skip to main content
Log in

Synthesis of gold nanoparticles using poly(ethyleneglycol)-b-poly(N,N-diethylaminoethylmethacrylate) as nanoreactors

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Polyethyleneglycol-block-poly(N,N′-diethylaminoethyl methacrylate) (PEG-b-PDEAEM) copolymers were used as nanoreactors for the preparation of gold nanoparticles (AuNPs) in aqueous and alcoholic medium. These copolymers were synthesized changing the size of the PDEAEM block by using reversible addition–fragmentation chain transfer (RAFT) polymerization as demonstrated by nuclear magnetic resonance and gel permeation chromatography measurements. The PEG-b-PDEAEM block copolymers were dispersed in water to form aggregates with sizes around 100 nm, depending on the lengths of the PDEAEM segment as well as the pH of the solution. The corresponding unimers were evident when these same copolymers were dissolved in alcohol or tetrahydrofuran medium showing hydrodynamic diameters (D h) between 4 and 10 nm. The aggregates and unimers were used as nanoreactors for the synthesis of AuNPs and were characterized using UV–Vis spectroscopy, dynamic light scattering and transmission electron microscopy. The AuNPs had a sphere-like shape with a diameter from 7 ± 1.7 to 34 ± 6 nm depending on the type of aggregate/unimer used in the synthesis. Nevertheless, when very large aggregates were used, AuNPs with different morphologies were observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Homberger M, Simon U (2010) On the application potential of gold nanoparticles in nanoelectronics and biomedicine. Phil Trans R Soc A 368:1405–1453. doi:10.1098/rsta.2009.0275

    Article  CAS  Google Scholar 

  2. Yeh Y-C, Creran B, Rotello VM (2012) Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale 4:1871–1880. doi:10.1039/C1NR11188D

    Article  CAS  Google Scholar 

  3. Zhang X, Chibli H, Mielke R, Nadeau J (2011) Ultrasmall gold-doxorubicin conjugates rapidly kill apoptosis-resistant cancer cells. Bioconjug Chem 22:235–243. doi:10.1021/bc100374p

    Article  CAS  Google Scholar 

  4. Baptista P, Pereira E, Eaton P, Doria G, Miranda A, Gomes I, Quaresma P, Franco R (2008) Gold nanoparticles for the development to clinical diagnosis methods. Anal Bioanal Chem 391:943–950. doi:10.1007/s00216-007-1768-z

    Article  CAS  Google Scholar 

  5. Huang X, El-Sayed MA (2010) Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J Adv Res 1:13–28. doi:10.1016/j.jare.2010.02.002

    Article  Google Scholar 

  6. Hvolbæk B, Janssens TVW, Clause BS, Falsig H, Christensen CH, Nørskov JK (2007) Catalytic activity of Au nanoparticles. Nano Today 2:14–18. doi:10.1016/S1748-0132(07)70113-5

    Article  Google Scholar 

  7. Chiu JJ, Kim BJ, Kramer EJ, Pine DJ (2005) Control of nanoparticle location in block copolymers. J Am Chem Soc 127:5036–5037. doi:10.1021/ja050376i

    Article  CAS  Google Scholar 

  8. Onses MS, Liu CC, Thode CJ, Nealey PF (2012) Highly selective immobilization of au nanoparticles onto isolated and dense nanopatterns of poly(2-vinyl pyridine) brushes down to single-particle resolution. Langmuir 28:7299–7307. doi:10.1021/la300552w

    Article  CAS  Google Scholar 

  9. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. J Chem Soc Chem Commun. doi:10.1039/C39940000801

    Google Scholar 

  10. Baraton MI (2003) Synthesis, functionalization and surface treatment of nanoparticles. American Scientific Publishers, Stevenson Ranch, California, USA

  11. Templeton AC, Wuelfing WP, Murray RW (2000) Monolayer-protected cluster molecules. Acc Chem Res 33:27–36. doi:10.1021/ar9602664

    Article  CAS  Google Scholar 

  12. Hu XZ, Zhou L, Gao C (2011) Hyperbranched polymers meet colloid nanocrystals: a promising avenue to multifunctional, robust nanohybrids. Colloid Polym Sci 289:1299–1320. doi:10.1007/s00396-011-2457-1

    Article  CAS  Google Scholar 

  13. Bao Y, Shen G, Liu H, Li Y (2013) Fabrication of gold nanoparticles through autoreduction of chloroaurate ions by thermo- and pH-responsive amino acid-based star-shaped copolymers. Polymer 54:652–660. doi:10.1016/j.polymer.2012.12.040

    Article  CAS  Google Scholar 

  14. Filali M, Meier MA, Schubert US, Gohy JF (2005) Star-block copolymers as templates for the preparation of stable gold nanoparticles. Langmuir 16:7995–8000. doi:10.1021/la050377o

    Article  Google Scholar 

  15. Oishi M, Hayashi H, Uno T, Ishii T, Iijima M, Nagasaki Y (2007) One-pot synthesis of pH-responsive PEGylated nanogels containing gold nanoparticles by autoreduction of chloroaurate ions within nanoreactors. Macromol Chem Phys 208:1176–1182. doi:10.1002/macp.200700094

    Article  CAS  Google Scholar 

  16. Kang S, Bhang SH, Hwang S, Yoon J-K, Song J, Jang H-K, Kim S, Kim B-S (2015) Mesenchymal stem cells aggregate and deliver gold nanoparticles to tumors for photothermal therapy. ACS Nano 9:9678–9690. doi:10.1021/acsnano.5b02207

    Article  CAS  Google Scholar 

  17. Fazal S, Jayasree A, Sasidharan S, Koyakutty M, Nair SV, Menon D (2014) Green synthesis of anisotropic gold nanoparticles for photothermal therapy of cancer. ACS Appl Mater Interfaces 6:8080–8089. doi:10.1021/am500302t

    Article  CAS  Google Scholar 

  18. Banu H, Sethi DK, Edgar A, Sheriff A, Rayees N, Renuka N, Faheem SM, Premkumar K, Vasanthakumar G (2015) Doxorubicin loaded polymeric gold nanoparticles targeted to human folate receptor upon laser photothermal therapy potentiates chemotherapy in breast cancer cell lines. J Photochem Photobiol B Biol 149:116–128. doi:10.1016/j.jphotobiol.2015.05.008

    Article  CAS  Google Scholar 

  19. Kowalczuk A, Trzcinska R, Trzebicka R, Müller AHE, Dworak A, Tsvetanov CB (2014) Loading of polymer nanocarriers: factors, mechanisms and applications. Prog Polym Sci 39:43–86. doi:10.1016/j.progpolymsci.2013.10.004

    Article  CAS  Google Scholar 

  20. Ramos J, Forcada J, Hidalgo-Alvarez R (2014) cationic polymer nanoparticles and nanogels: from synthesis to biotechnological applications. Chem Rev 114:367–428. doi:10.1021/cr3002643

    Article  CAS  Google Scholar 

  21. Pikabea A, Aguirre G, Miranda J, Ramos J, Forcada J (2015) Understanding of nanogels swelling behavior through a deep insight into their morphology. J Polym Sci A Polym Chem 53:2017–2025. doi:10.1002/pola.27653

    Article  CAS  Google Scholar 

  22. Chen Q, Lin W, Wang H, Wang J, Zhang L (2016) PDEAEMA-based pH-sensitive amphiphilic pentablock copolymers for controlled anticancer drug delivery. RSC Adv 6:68018–68027. doi:10.1039/C6RA10757E

    Article  CAS  Google Scholar 

  23. Aguirre G, Ramos J, Forcada J (2016) Advanced design of T and pH dual-responsive PDEAEMA–PVCL core–shell nanogels for siRNA delivery. J Polym Sci Part A Polym Chem 54:3203–3217. doi:10.1002/pola.28207

    Article  CAS  Google Scholar 

  24. Cortez-Lemus NA, Licea-Claverie A (2014) RAFT synthesis of poly-(2-dimethylaminoethyl methacrylate) three-arm star polymers for the preparation of gold nanoparticles. Polym Bull 71:1757–1772. doi:10.1007/s00289-014-1153-y

    Article  CAS  Google Scholar 

  25. Cortez-Lemus NA, Licea-Claverie A, Paraguay-Delgado F, Alonso-Nuñez G (2015) Gold nanoparticles size design and control by poly(N, N′-diethylaminoethyl methacrylate). J Nanomat 2015:273814. doi:10.1155/2015/273814

    Article  Google Scholar 

  26. Moad G, Chong YK, Postma A, Rizzardo E, Thang SH (2005) Advances in RAFT polymerization: the synthesis of polymers with defined end-groups. Polymer 46:8458–8468. doi:10.1016/j.polymer.2004.12.061

    Article  CAS  Google Scholar 

  27. Navarro-Vega P, Zizumbo-López A, Licea-Claverie A, Vega-Rios A, Paraguay-Delgado F (2014) Equilibrium and nonequilibrium nanoscale ordering of polystyrene-b-poly(N, N′-diethylaminoethyl methacrylate), a block copolymer carrying tertiary amine functional groups. J Nanomat 2014:725356. doi:10.1155/2014/725356

    Article  Google Scholar 

  28. Determan MD, Guo L, Thiyagarajan P, Mallapragada SK (2006) Supramolecular self-assembly of multiblock copolymers in aqueous solution. Langmuir 22:1469–1473. doi:10.1021/la0527691

    Article  CAS  Google Scholar 

  29. Kafouris D, Patrickios CS (2009) Synthesis and characterization of shell-cross-linked polymer networks and large-core star polymers: effect of the volume of the cross-linking mixture. Eur Polym J 45:10–18. doi:10.1016/j.eurpolymj.2008.09.014

    Article  CAS  Google Scholar 

  30. Lee H, Venable RM, MacKerell AD Jr, Pastor RW (2008) Molecular dynamics studies of polyethylene oxide and polyethylene glycol: hydrodynamic radius and shape anisotropy. Biophys J 95:1590–1599. doi:10.1529/biophysj.108.133025

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This investigation was supported by the National Council of Science and Technology of Mexico (CONACYT) through Grants CB-2012-C01-178709 and INFR-2014-01-224284. Furthermore, we thank I. A. Rivero and V. Miranda from IT Tijuana, and W. Antunez, O. Solis-Canto and C. Ornelas from CIMAV for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angel Licea-Claveríe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cortez-Lemus, N.A., García-Soria, S.V., Paraguay-Delgado, F. et al. Synthesis of gold nanoparticles using poly(ethyleneglycol)-b-poly(N,N-diethylaminoethylmethacrylate) as nanoreactors. Polym. Bull. 74, 3527–3544 (2017). https://doi.org/10.1007/s00289-017-1906-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-1906-5

Keywords

Navigation