Skip to main content
Log in

The Isolation and Characterization of Kronos, a Novel Caulobacter Rhizosphere Phage that is Similar to Lambdoid Phages

  • Published:
Current Microbiology Aims and scope Submit manuscript

A Correction to this article was published on 27 April 2019

This article has been updated

Abstract

Despite their ubiquity, relatively few bacteriophages have been characterized. Here, we set out to explore Caulobacter bacteriophages (caulophages) in the rhizosphere and characterized Kronos, the first caulophage isolated from the rhizosphere. Kronos is a member of the Siphoviridae family since it has a long flexible tail. In addition, an analysis of the Kronos genome indicated that many of the predicted proteins were distantly related to those of bacteriophages in the lambdoid family. Consistent with this observation, we were able to demonstrate the presence of cos sites that are similar to those found at the ends of lambdoid phage genomes. Moreover, Kronos displayed a relatively rare head and tail morphology compared to other caulophages but was similar to that of the lambdoid phages. Taken together, these data indicate that Kronos is distantly related to lambdoid phages and may represent a new Siphoviridae genus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

  • 27 April 2019

    The original version of this article unfortunately contained mistakes in Table 1 values. Some of the values in “TAY-ASD who received services” were incorrect. The corrected Table 1 is given below.

References

  1. Aalto AP, Bitto D, Ravantti JJ et al (2012) Snapshot of virus evolution in hypersaline environments from the characterization of a membrane-containing salisaeta icosahedral phage 1. Proc Natl Acad Sci USA 109:7079–7084

    Article  PubMed  PubMed Central  Google Scholar 

  2. Abedon ST, Yin J (2009) Bacteriophage plaques: theory and analysis. In: Clokie MR, Kropinski AM (eds) Methods in molecular biology™, vol 501. Humana Press, Clifton, pp 161–174

    Google Scholar 

  3. Ash KT, Drake KM, Gibbs WS et al (2017) Genomic diversity of Type B3 bacteriophages of Caulobacter crescentus. Curr Microbiol 74:779–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Aziz RK, Bartels D, Best AA et al (2008) The RAST server: rapid annotations using subsystems technology. BMC Genom 9:75

    Article  CAS  Google Scholar 

  5. Black LW (1989) DNA packaging in dsDNA bacteriophages. Annu Rev Microbiol 43:267–292

    Article  CAS  PubMed  Google Scholar 

  6. Casjens SR, Hendrix RW (2015) Bacteriophage lambda: early pioneer and still relevant. Virology 479:310–330

    Article  CAS  PubMed  Google Scholar 

  7. Catalano CE (2000) The terminase enzyme from bacteriophage lambda: a DNA-packaging machine. Cell Mol Life Sci 57:128–148

    Article  CAS  PubMed  Google Scholar 

  8. Chen J, Novick RP (2009) Phage-mediated intergeneric transfer of toxin genes. Science 323:139–141

    Article  CAS  PubMed  Google Scholar 

  9. Dingwall A, Shapiro L, Ely B (1990) Analysis of bacterial genome organization and replication using pulsed-field gel electrophoresis. Methods 1:160–168

    Article  CAS  Google Scholar 

  10. Ely B, Gibbs W, Diez S et al (2015) The Caulobacter crescentus transducing phage Cr30 is a unique member of the T4-like family of myophages. Curr Microbiol 70:854–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ely B, Johnson RC (1977) Generalized transduction in Caulobacter crescentus. Genetics 87:391–399

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Etesami H, Maheshwari DK (2018) Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects. Ecotoxicol Environ Saf 156:225–246

    Article  CAS  PubMed  Google Scholar 

  13. Fuhrman JA, Noble RT (1995) Viruses and protists cause similar bacterial mortality in coastal seawater. Limnol Oceanogr 40:1236–1242

    Article  Google Scholar 

  14. Gill JJ, Berry JD, Russell WK et al (2012) The Caulobacter crescentus phage phiCbK: genomics of a canonical phage. BMC Genom 13:542

    Article  CAS  Google Scholar 

  15. Johnson RC, Wood NB, Ely B (1977) Isolation and characterization of bacteriophages for Caulobacter crescentus. J Gen Virol 37:323–335

    Article  Google Scholar 

  16. Juhala RJ, Ford ME, Duda RL et al (2000) Genomic sequences of bacteriophages HK97 and HK022: pervasive genetic mosaicism in the lambdoid bacteriophages. J Mol Biol 299:27–51

    Article  CAS  PubMed  Google Scholar 

  17. Lee JH, Shin H, Choi Y, Ryu S (2013) Complete genome sequence analysis of bacterial-flagellum-targeting bacteriophage chi. Arch Virol 158:2179–2183

    Article  CAS  PubMed  Google Scholar 

  18. Naveed M, Mitter B, Yousaf S et al (2014) The endophyte Enterobacter sp. FD17: a maize growth enhancer selected based on rigorous testing of plant beneficial traits and colonization characteristics. Biol Fertil Soils 50:249–262

    Article  CAS  Google Scholar 

  19. Nedialkova LP, Sidstedt M, Koeppel MB et al (2016) Temperate phages promote colicin-dependent fitness of Salmonella enteric serovar Typhimurium. Enviro Microbiol 18:1591–1603

    Article  CAS  Google Scholar 

  20. Nguyen D, Ely B (2018) A genome comparison of T7-like Podoviruses that infect Caulobacter crescentus. Curr Microbiol 75:760–765

    Article  CAS  PubMed  Google Scholar 

  21. Oliveira L, Tavares P, Alonso JC (2013) Headful DNA packaging: bacteriophage SPP1 as a model system. Virus Res 173:247–259

    Article  CAS  PubMed  Google Scholar 

  22. Poindexter JS (1964) Biological properties and classification of the Caulobacter group. Bacteriol Rev 28:231–295

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Prischl M, Hackl E, Pastar M et al (2012) Genetically modified Bt maize lines containing cry3Bb1, cry1A105 or cry1Ab2 do not affect the structure and functioning of root-associated endophyte communities. Appl Soil Ecol 54:39–48

    Article  Google Scholar 

  24. Rao VB, Feiss M (2008) The bacteriophage DNA packaging motor. Annu Rev Genet 42:647–681

    Article  CAS  PubMed  Google Scholar 

  25. Richardson CC (1983) Bacteriophage T7: minimal requirements for the replication of a duplex DNA molecule. Cell 33:315–317

    Article  CAS  PubMed  Google Scholar 

  26. Roberts MD, Martin NL, Kropinski AM (2004) The genome and proteome of coliphage T1. Virology 318:245–266

    Article  CAS  PubMed  Google Scholar 

  27. Rosenvold EC, Honigman A (1977) Mapping of AvaI and XmaI cleavage sites in bacteriophage DNA including a new technique of DNA digestion in agarose gels. Gene 2:273–288

    Article  CAS  Google Scholar 

  28. Rutherford K, Parkhill J, Crook J et al (2000) Artemis: sequence visualization and annotation. Bioinformatics 10:944–945

    Article  Google Scholar 

  29. Saraf M, Jha CK, Patel D (2010) The role of ACC deaminase producing PGPR in sustainable agriculture. In: Maheshwari DK (ed) Plant growth and health promoting bacteria, vol 1. Springer, Berlin, pp 365–385

    Chapter  Google Scholar 

  30. Schaefer AL, Lappala CR, Morlen RP et al (2013) LuxR-and LuxI-type quorum sensing circuits are prevalent in members of the Populus deltoides microbiome. J Appl Environ Microbiol 79:5745–5752

    Article  CAS  Google Scholar 

  31. Sharaf A, Mercati F, Elmaghraby I et al (2017) Functional and comparative genome analysis of novel virulent actinophages belonging to Streptomyces flavovirens. BMC Microbiol 17:51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Takeshi M, Kenichi M (1983) Lambda phage DNA sequences affecting the packaging process. Gene 24:199–206

    Article  Google Scholar 

  33. Vahanian N, Oh CS, Sippy J et al (2017) Natural history of a viral cohesive end site: cosN of the λ-like phages. Virology 509:140–145

    Article  CAS  PubMed  Google Scholar 

  34. Vance CP (2011) Phosphorus as a critical macronutrient. In: Barraclough P, Hawkesford MJ (eds) The molecular and physiological basis of nutrient use efficiency in crops, vol 1. Wiley, New York, pp 227–264

    Chapter  Google Scholar 

  35. Wang N (2006) Lysis timing and bacteriophage fitness. Genetics 172:17–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Waterbury PG, Lane MJ (1987) Generation of lambda phage concatemers for use as pulsed field electrophoresis size markers. Nucleic Acids Res 15:3930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was funded in part by National Institutes of Health Grant GM076277 to BE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bert Ely.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 139 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berrios, L., Ely, B. The Isolation and Characterization of Kronos, a Novel Caulobacter Rhizosphere Phage that is Similar to Lambdoid Phages. Curr Microbiol 76, 558–565 (2019). https://doi.org/10.1007/s00284-019-01656-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-019-01656-1

Navigation