Skip to main content
Log in

Complete genome sequence analysis of bacterial-flagellum-targeting bacteriophage chi

  • Annotated Sequence Record
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Bacteriophage chi is a well-known phage that infects pathogens such as E. coli, Salmonella, and Serratia via bacterial flagella. To further understand its host-phage interaction and infection mechanism via host flagella, the genome was completely sequenced and analyzed. The phage genome contains 59,407-bp-length DNA with a GC content of 56.51 %, containing 75 open reading frames (ORFs) with no tRNA genes. Its annotation and functional analysis revealed that chi is evolutionarily very closely related to Enterobacter phage Enc34 and Providencia phage Redjac. However, most of the annotated genes encode hypothetical proteins, indicating that further genomic study of phage chi is required to elucidate the bacterial-flagellum-targeting infection mechanism of phage chi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  2. Barbara G, Stanghellini V, Berti-Ceroni C, De Giorgio R, Salvioli B, Corradi F, Cremon C, Corinaldesi R (2000) Role of antibiotic therapy on long-term germ excretion in faeces and digestive symptoms after Salmonella infection. Aliment Pharmacol Ther 14:1127–1131

    Article  PubMed  CAS  Google Scholar 

  3. Besemer J, Lomsadze A, Borodovsky M (2001) GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 29:2607–2618

    Article  PubMed  CAS  Google Scholar 

  4. Bruttin A, Brussow H (2005) Human volunteers receiving Escherichia coli phage T4 orally: a safety test of phage therapy. Antimicrob Agents Chemother 49:2874–2878

    Article  PubMed  CAS  Google Scholar 

  5. Cairns BJ, Payne RJH (2008) Bacteriophage therapy and the mutant selection window. Antimicrob Agents Chemother 52:4344–4350

    Article  PubMed  CAS  Google Scholar 

  6. Calendar R (2006) The bacteriophages, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  7. Campbell A (2003) The future of bacteriophage biology. Nat Rev Genet 4:471–477

    Article  PubMed  CAS  Google Scholar 

  8. Carver T, Berriman M, Tivey A, Patel C, Bohme U, Barrell BG, Parkhill J, Rajandream MA (2008) Artemis and ACT: viewing, annotating and comparing sequences stored in a relational database. Bioinformatics 24:2672–2676

    Article  PubMed  CAS  Google Scholar 

  9. Casjens SR, Gilcrease EB (2009) Determining DNA packaging strategy by analysis of the termini of the chromosomes in tailed-bacteriophage virions. Methods Mol Biol 502:91–111

    Article  PubMed  CAS  Google Scholar 

  10. CDC (2007) Bacterial foodborne and diarrheal disease national case surveillance: annual report, 2005. Centers for Disease Control and Prevention, Atlanta

  11. CDC (2008) Salmonella surveillance: annual summary, 2006. Centers for Disease Control and Prevention, Atlanta

    Google Scholar 

  12. Coffey B, Mills S, Coffey A, McAuliffe O, Ross RP (2010) Phage and their lysins as biocontrol agents for food safety applications. Ann Rev Food Sci Technol 1:449–468

    Article  CAS  Google Scholar 

  13. Delcher AL, Bratke KA, Powers EC, Salzberg SL (2007) Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23:673–679

    Article  PubMed  CAS  Google Scholar 

  14. Karmali MA, Steele BT, Petric M, Lim C (1983) Sporadic cases of haemolytic-uraemic syndrome associated with faecal cytotoxin and cytotoxin-producing Escherichia coli in stools. Lancet 1:619–620

    Article  PubMed  CAS  Google Scholar 

  15. Kumar S, Nei M, Dudley J, Tamura K (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9:299–306

    Article  PubMed  CAS  Google Scholar 

  16. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  PubMed  CAS  Google Scholar 

  17. Lindberg AA (1973) Bacteriophage receptors. Ann Rev Microbiol 27:205–241

    Article  CAS  Google Scholar 

  18. McNair K, Bailey BA, Edwards RA (2012) PHACTS, a computational approach to classifying the lifestyle of phages. Bioinformatics 28:614–618

    Article  PubMed  CAS  Google Scholar 

  19. Mead PS, Griffin PM (1998) Escherichia coli O157:H7. Lancet 352:1207–1212

    Article  PubMed  CAS  Google Scholar 

  20. Mead PS, Slutsker L, Dietz V, McCaig LF, Bresee JS, Shapiro C, Griffin PM, Tauxe RV (1999) Food-related illness and death in the United States. Emerg Infect Dis 5:607–625

    Article  PubMed  CAS  Google Scholar 

  21. Meynell EW (1961) A phage, øχ, which attacks motile bacteria. J Gen Microbiol 25:253–290

    Article  PubMed  CAS  Google Scholar 

  22. Payne RJH, Jansen VAA (2000) Phage therapy: The peculiar kinetics of self-replicating pharmaceuticals. Clin Pharmacol Ther 68:225–230

    Article  PubMed  CAS  Google Scholar 

  23. Sambrook J, Russell D (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, NY

    Google Scholar 

  24. Samuel ADT, Pitta TP, Ryu WS, Danese PN, Leung ECW, Berg HC (1999) Flagellar determinants of bacterial sensitivity to χ-phage. P Natl A Sci USA 96:9863–9866

    Article  CAS  Google Scholar 

  25. Sertic V, Boulgakov N-A (1936) Bactnriophages specifique pour des varites bacteriennes flagellees. C R Soc Biol Paris 113:105–113

    Google Scholar 

  26. Wilcox SA, Toder R, Foster JW (1996) Rapid isolation of recombinant lambda phage DNA for use in fluorescence in situ hybridization. Chromosome Res 4:397–398

    Article  PubMed  CAS  Google Scholar 

  27. Yamaguchi S, Fujita H, Sugata K, Taira T, Iino T (1984) Genetic analysis of H2, the structural gene for phase-2 flagellin in Salmonella. J Gen Microbiol 130:255–265

    PubMed  CAS  Google Scholar 

  28. Zdobnov EM, Apweiler R (2001) InterProScan—an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17:847–848

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by WCU (World Class University) program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Science and Technology (R32-2008-000-10183-0) and the R&D Convergence Center Support Program of the Ministry for Food, Agriculture, Forestry and Fisheries, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangryeol Ryu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 272 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, JH., Shin, H., Choi, Y. et al. Complete genome sequence analysis of bacterial-flagellum-targeting bacteriophage chi. Arch Virol 158, 2179–2183 (2013). https://doi.org/10.1007/s00705-013-1700-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-013-1700-0

Keywords

Navigation