Skip to main content

Advertisement

Log in

Are There Any Other Compounds Isolated From Dermacoccus spp at All?

  • Review Article
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Microbial-derived natural products have functional and structural diversity and complexity. For several decades, they have provided the basic foundation for most drugs available to modern medicine. Microbial-derived natural products have wide-ranging applications, especially as chemotherapeutics for various diseases and disorders. By exploring distinct microorganisms in different environments, small novel bioactive molecules with unique functionalities and biological or biomedical significance can be identified. Aquatic environments, such as oceans or seas, are considered to be sources of abundant novel bioactive compounds. Studies on marine microorganisms have revealed that several bioactive compounds extracted from marine algae and invertebrates are eventually generated by their associated bacteria. These findings have prompted intense research interest in discovering novel compounds from marine microorganisms. Natural products derived from Dermacoccus exhibit antibacterial, antitumor, antifungal, antioxidant, antiviral, antiparasitic, and eventually immunosuppressive bioactivities. In this review, we discussed the diversity of secondary metabolites generated by genus Dermacoccus with respect to their chemical structure, biological activity, and origin. This brief review highlights and showcases the pivotal importance of Dermacoccus-derived natural products and sheds light on the potential venues of discovery of new bioactive compounds from marine microorganisms.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abdel-Mageed WM, Milne BF, Wagner M, Schumacher M, Sandor P, Pathom-Are W, Goodfellow M, Bull AT, Horikoshi K, Ebel R, Diederich M, Fiedler HP, Jaspars M (2010) Dermacozines, a new phenazine family from deep-sea dermacocci isolated from a mariana trench sediment. Org Biomol Chem 8:2352–2362

    Article  CAS  PubMed  Google Scholar 

  2. Antonenko YN, Rokitskaya TI, Huczyński A (2015) Electrogenic and nonelectrogenic ion fluxes across lipid and mitochondrial membranes mediated by monensin and monensin ethyl ester. Biochim Biophys Acta 1848:995–1004

    Article  CAS  PubMed  Google Scholar 

  3. Banin E, Vasil ML, Greenberg EP (2005) Iron and Pseudomonas aeruginosa biofilm formation. Proc Natl Acad Sci USA 102:11076–11081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Berlutti F, Morea C, Battistoni A, Sarli S, Cipriani P, Superti F, Ammendolia MG, Valenti P (2005) Iron availability influences aggregation, biofilm, adhesion and invasion of Pseudomonas aeruginosa and Burkholderia cenocepacia. Int J Immunopathol Pharmacol 18:661–670

    CAS  PubMed  Google Scholar 

  5. Bhatt A, Stark CB, Harvey BM, Gallimore AR, Demydchuk YA, Spencer JB, Staunton J, Leadlay PF (2005) Accumulation of an E, E, E-triene by the monensin-producing polyketide synthase when oxidative cyclization is blocked. Angew Chem Int Edit 44:7075–7078

    Article  CAS  Google Scholar 

  6. Buckland PR, Gulliford SP, Herbert RB, Holliman FG (1981) The biosynthesis of lomofungin via phenazine-l,6-dicarboxylic acid. J Chem Res Synop 362

  7. Bull AT, Stach JE (2007) Marine actinobacteria: new opportunities for natural product search and discovery. Trends Microbiol 15:491–499

    Article  CAS  PubMed  Google Scholar 

  8. Cane DE, Celmer WD, Westley JW (1983) Unified stereochemical model of polyether antibiotic structure and biogenesis. J Am Chem Soc 105:3594–3600

    Article  CAS  Google Scholar 

  9. Capone KA, Dowd SE, Stamatas GN, Nikolovski J (2011) Diversity of the human skin microbiome early in life. J Invest Dermatol 131:2026–2032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chapman H, Jeffers T, Williams R (2010) Forty years of monensin for the control of coccidiosis in poultry. Poult Sci 89:1788–1801

    Article  CAS  PubMed  Google Scholar 

  11. Chin-A-Woeng TFC, Thomas-Oates JE, Lugtenberg BJJ, Bloemberg GV (2001) Introduction of the phzH gene of Pseudomonas chlororaphis PCL1391 extends the range of biocontrol ability of phenazine-1-carboxylic acid-producing Pseudomonas spp. strains. Mol Plant Microbe Interact 14:1006–1015

    Article  CAS  PubMed  Google Scholar 

  12. Cimmino A, Evidente A, Mathieu V, Andolf A, Lefranc F, Kornienko A, Kiss R (2012) Phenazines and Cancer. Nat Prod Rep 29:487–501

    Article  CAS  PubMed  Google Scholar 

  13. Cleveland LM, Minter ML, Cobb KA, Scott AA, German VF (2008) Lead hazards for pregnant women and children: part 1: immigrants and the poor shoulder most of the burden of lead exposure in this country. Part 1 of a two-part article details how exposure happens, whom it affects, and the harm it can do. Am J Nurs 108:40–49

    Google Scholar 

  14. Colombatti M, Dell’arciprete L, Chignola R, Tridente G (1990) Carrier protein-monensin conjugates: enhancement of immunotoxin cytotoxicity and potential in tumor treatment. Cancer Res 50:1385–1391

    CAS  PubMed  Google Scholar 

  15. Cordero MR, Zumalaca´rregui JM (2000) Characterization of Micrococcaceae isolated from salt used for spanish dry-cured ham. Lett Appl Microbiol 31:303–306

    Article  CAS  PubMed  Google Scholar 

  16. Cory-Slechta DA (1996) Legacy of lead exposure: consequences for the central nervous system. Otolaryngol Head Neck Surg 114:224–226

    Article  CAS  PubMed  Google Scholar 

  17. Cybulski W, Radko L, Rzeski W (2015) Cytotoxicity of monensin, narasin and salinomycin and their interaction with silybin in hepg2, lmh and l6 cell cultures. Toxicol In Vitro 29:337–344

    Article  CAS  PubMed  Google Scholar 

  18. Day L, Chamberlin J, Gordee E, Chen S, Gorman M, Hamill RL, Ness T, Weeks RE, Stroshane R (1973) Biosynthesis of monensin. Antimicrob Agents Chemother 4:410–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. De la Rosa MC, Mohino MR, Mohino M, Mosso MA (1990) Characteristics of micrococci and staphylococci isolated from semipreserved meat products. Food Microbiol 7:207–215

    Article  Google Scholar 

  20. Deng Y, Zhang J, Wang Z, Yan Z, Qiao M, Ye J, Wei Q, Wang J, Wang X, Zhao L, Lu S, Tang S, Mohammed MK, Liu H, Fan J, Zhang F, Zou Y, Liao J, Qi H, Haydon RC, Luu HH, He TC, Tang L (2015) Antibiotic monensin synergizes with EGFR inhibitors and oxaliplatin to suppress the proliferation of human ovarian cancer cells. Sci Rep 5:17523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Derbyshire EJ, Henry RV, Stahel RA, Wawrzynczak EJ (1992) Potent cytotoxic action of the immunotoxin swa11-ricin a chain against human small cell lung cancer cell lines. Br J Cancer 66:444–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fang Z, Gong C, Ouyang Z, Liu P, Sun L, Wang X (2014) Characteristic and concentration distribution of culturable airborne bacteria in residential environments in Beijing, China. Aerosol Air Qual Res 14:943–953

    Google Scholar 

  23. Fenical W, Jensen PR (2006) Developing a new resource for drug discovery: marine actinomycete bacteria. Nat Chem Biol 2:666–673

    Article  CAS  PubMed  Google Scholar 

  24. Fiedler HP, Bruntner C, Bull AT, Ward AC, Goodfellow M, Potterat O, Puder C, Mihm G (2005) Marine actinomycetes as a source of novel secondary metabolites. Ant van Leeuwenhoek 87:37–42

    Article  CAS  Google Scholar 

  25. Flora G, Gupta D, Tiwari A (2012) Toxicity of lead: a review with recent updates. Interdiscip Toxicol. 5:47–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ghanta VR, Pasula A, Soma L, Raman B (2016) Synthetic studies on dermacozines: first synthesis of dermacozines a, b and c. Chem PubSoc Europe 6:1296–1299

    Google Scholar 

  27. Giddens SR, FengY Mahanty HK (2002) Characterization of a novel phenazine antibiotic gene cluster in Erwinia herbicola Eh1087. Mol Microbiol 45:769–783

    Article  CAS  PubMed  Google Scholar 

  28. Gorantla JN, Kumar NS, Nisha GV, Sumandu AS, Dileep C, Sudaresan A, Kumar MM, Lankalapalli RS, Kumar BS (2014) Purification and characterization of antifungal phenazines from a fluorescent pseudomonas strain fpo4 against medically important fungi. J Mycol Med 24:185–192

    Article  CAS  PubMed  Google Scholar 

  29. Gordon RE, Mihm JM (1962) The type species of the genus Nocardia. Acad Sci 98:628–636

    Article  Google Scholar 

  30. Graça AP, Viana F, Bondoso J, Correia MI, Gomes LAGR, Humanes M, Reis A, Xavier J, Gaspar H, Lage O (2015) The antimicrobial activity of heterotrophic bacteria isolated from the marine sponge Erylus deficiens (Astrophorida, Geodiidae). Front Microbiol 6:1–14

    Google Scholar 

  31. Grant LD (2008) Lead and compounds, in environmental toxicants: human exposures and their health effects, 3rd edn. John Wiley & Sons Inc., USA

    Google Scholar 

  32. Grice EA, Segre JA (2011) The skin microbiome. Nat Rev Microbiol 9:244–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Groth I, Schumann P, Rainey F, Martin K, Schuetze B, Augsten K (1997) Demetria terragena gen. nov., sp. nov., a new genus of actinomycetes isolated from compost soil. Int J Syst Bacteriol 47:1129–1133

    Article  CAS  PubMed  Google Scholar 

  34. Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg RA, Lander ES (2009) Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138:645–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gupta RC (2012) Veterinary toxicology: basic and clinical principles, 2nd edn. Academic Press, Boston

    Google Scholar 

  36. Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    Article  CAS  PubMed  Google Scholar 

  37. Harvey BM, Mironenko T, Sun Y, Hong H, Deng Z, Leadlay PF, Weissman KJ, Haydock SF (2007) Insights into polyether biosynthesis from analysis of the nigericin biosynthetic gene cluster in Streptomyces sp. DSM4137. Chem Biol 14:703–714

    Article  CAS  PubMed  Google Scholar 

  38. Haynes WC, Stodola FH, Locke JM, Pridham TG, Conway HF, Sohns VE, Jackson RW (1956) Pseudomonas aureofaciens kluyver and phenazine α-carboxylic acid, its characteristic pigment. J Bacteriol 72:412–417

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Huczyński A, Klejborowska G, Antoszczak M, Maj E, Wietrzyk J (2015) Anti-proliferative activity of monensin and its tertiary amide derivatives. Bioorg Med Chem Lett 15:4539–4543

    Article  CAS  Google Scholar 

  40. Hüttel W, Spencer JB, Leadlay PF (2014) Intermediates in monensin biosynthesis: a late step in biosynthesis of the polyether ionophore monensin is crucial for the integrity of cation binding. Beilstein J Org Chem 10:361–368

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Ivanova J, Gluhcheva Y, Dimova D, Pavlova E, Arpadjan S (2016) Comparative assessment of the effects of salinomycin and monensin on the biodistribution of lead and some essential metal ions in mice, subjected to subacute lead intoxication. J Trace Elem Med Bio 33:31–36

    Article  CAS  Google Scholar 

  42. Jensen PR, Mincer TJ, Williams PG, Fenical W (2005) Marine actinomycete diversity and natural product discovery. Ant van Leeuwenhoek 87:43–48

    Article  CAS  Google Scholar 

  43. Kennedy RK, Naik PR, Veena V, Lakshmi B, Lakshmi P, Krishna R, Sakthivel N (2015) 5-Methyl Phenazine-1-Carboxylic Acid: a novel bioactive metabolite by a rhizosphere soil bacterium that exhibits potent antimicrobial and anticancer activities. Chem Biol Interact 231:71–82

    Article  CAS  PubMed  Google Scholar 

  44. Ketola K, Vainio P, Fey V, Kallioniemi O, Iljin K (2010) Monensin is a potent inducer of oxidative stress and inhibitor of androgen signaling leading to apoptosis in prostate cancer cells. Mol Cancer Ther 9:3175–3185

    Article  CAS  PubMed  Google Scholar 

  45. Kevin-Ii DA, Meujo DA, Hamann MT (2009) Polyether ionophores: broad-spectrum and promising biologically active molecules for the control of drug-resistant bacteria and parasites. Expert Opin Drug Discov 4:109–146

    Article  PubMed  Google Scholar 

  46. Kim CG, Kirsching A, Bergon P, AhnY Wang JJ, Shibuya M, Floss HG (1992) Formation of 3-amino-5-hydroxybenzoic acid, the precursor of mC7 N units in ansamycin antibiotics, by a new variant of the shikimate pathway. J Am Chem Soc 114:4941–4943

    Article  CAS  Google Scholar 

  47. Kondratyuk TP, Park EJ, Yu R, van Breemen RB, Asolkar RN, Murphy BT, Fenical W, Pezzuto JM (2012) Novel marine phenazines as potential cancer chemopreventive and anti-inflammatory agents. Mar Drugs 10:451–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kralovcova E, Krumphanzl V, Vanek Z (1984) Improving the production of monensin by Streptomyces cinnamonensis. Folia Microbiol 29:35–42

    Article  CAS  Google Scholar 

  49. Kyriakis SC, Lemmas JC, Mavromatis JC, Tsinas AC, Lekkas SG, Tsangaris TA (1993) The effect of monensin in the control of transmissible gastroenteritis (TGE) of pigs. J Swine Health Prod 1:15–18

    Google Scholar 

  50. Laursen JB, Nielsen J (2004) Phenazine natural products: biosynthesis, synthetic analogues, and biological activity. Chem Rev 104:1663–1686

    Article  CAS  PubMed  Google Scholar 

  51. Lidsky TI, Schneider JS (2003) Lead neurotoxicity in children: basic mechanisms and clinical correlates. Brain 126:5–19

    Article  PubMed  Google Scholar 

  52. Ling Y, Priebe W, Perezsoler R (1993) Intrinsic cytotoxicity and reversal of multidrug-resistance by monensin in kb parent and mdr cells. Int J Oncol 3:971–977

    CAS  PubMed  Google Scholar 

  53. Łowicki D, Huczyński A (2013) Structure and antimicrobial properties of monensin a and its derivatives: summary of the achievements. BioMed Re Int 2013:1–14

    Article  CAS  Google Scholar 

  54. Łowicki D, Huczyński A, Stefańska J, Brzezinski B (2010) Structural characterization and antibacterial activity against clinical isolates of Staphylococcus of N-phenylamide of monensin A and its 1:1 complexes with monovalent cations. Eur J Med Chem 45:4050–4057

    Article  PubMed  CAS  Google Scholar 

  55. Margolis LB, Novikova YU, Rozovskaya IA, Skulachev VP (1989) K +/H + -antiporter nigericin arrests DNA synthesis in ehrlich ascites carcinoma cells. Proc Natl Acad Sci 86:6626–6629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mavrodi DV, Blankenfeldt W, Thomashow LS (2006) Phenazine compounds in fluorescent pseudomonas spp. biosynthesis and regulation. Annu Rev Phytopathol 44:417–445

    Article  CAS  PubMed  Google Scholar 

  57. Mavrodi DV, Bonsall RF, Delaney SM, Soule MJ, Phillips G, Thomashow LS (2001) Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. J Bacteriol 183:6454–6465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mavrodi DV, Ksenzenko VN, Bonsall RF, Cook RJ, Boronin AM, Thomashow LS (1998) A seven-gene locus for synthesis of phenazine-1-carboxylic acid by Pseudomonas fluorescens2-79. J Bacteriol 180:2541–2548

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Mavrodi DV, Peever TL, Mavrodi OV, Parejko JA, Raaijmakers JM, Lemanceau P, Mazurier S, Heide L, Blankenfeldt W, Weller DM, Thomashow LS (2010) Diversity and evolution of the phenazine biosynthesis pathway. Appl Environ Microbiol 76:866–879

    Article  CAS  PubMed  Google Scholar 

  60. McDonald M, Mavrodi DV, Thomashow LS, Floss HG (2001) Phenazine biosynthesis in Pseudomonas fluorescens: branchpoint from the primary shikimate biosynthetic pathway and role of phenazine-1,6-dicarboxylic acid. J Am Chem Soc 123:9459–9460

    Article  CAS  PubMed  Google Scholar 

  61. Minami A, Ose T, Sato K, Oikawa A, Kuroki K, Maenaka K, Oguri H, Oikawa H (2014) Allosteric regulation of epoxide opening cascades by a pair of epoxide hydrolases in monensin biosynthesis. ACS Chem Biol 9:562–569

    Article  CAS  PubMed  Google Scholar 

  62. Minett MS, Pereira V, Sikandar S, Matsuyama A, Lolignier S, Kanellopoulos AH, Mancini F, Iannetti GD, Bogdanov YD, Santana-Varela S, Millet Q, Baskozos G, MacAllister R, Cox JJ, Zhao J, Wood JN (2015) Endogenous opioids contribute to insensitivity to pain in humans and mice lacking sodium channel Nav1. 7. Nat Commun 6:8967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Molinski TF, Dalisay DS, Lievens SL, Saludes JP (2009) Drug development from marine natural products. Nat Rev Drug Discovery 8:69–85

    Article  CAS  PubMed  Google Scholar 

  64. Needleman H (2004) Lead poisoning. Annu Rev Med 55:209–222

    Article  CAS  PubMed  Google Scholar 

  65. Newman DJ, Cragg GM (2004) Marine natural products and related compounds in clinical and advanced preclinical trials. J Nat Prod 67:1216–1238

    Article  CAS  PubMed  Google Scholar 

  66. Newton DL, Hansen HJ, Mikulski SM, Goldenberg DM, Rybak SM (2001) Potent and specific antitumor effects of an anti-cd22–targeted cytotoxic ribonuclease: potential for the treatment of non-hodgkin lymphoma. Blood 97:528–535

    Article  CAS  PubMed  Google Scholar 

  67. Pachauri V, Dubey M, Yadav A, Kushwaha P, Flora S (2012) Monensin potentiates lead chelation efficacy of MiADMSA in rat brain post chronic lead exposure. Food Chem Toxicol 50:4449–4460

    Article  CAS  PubMed  Google Scholar 

  68. Pang MC, Hong H, Guo H, Liu WT (2005) Biofilm formation characteristics of bacterial isolates retrieved from a reverse osmosis membrane. Environ Sci Technol 39:7541–7550

    Article  CAS  PubMed  Google Scholar 

  69. Papamanoli E, Kotzekidou P, Tzanetakis N, Litopoulou-Tzanetaki E (2002) Characterization of Micrococcaceae isolated from dry fermented sausage. Food Microbiol 19:441–449

    Article  CAS  Google Scholar 

  70. Parsons JF, Calabrese K, Eisenstein E, Ladner JE (2003) Structure and mechanism of Pseudomonas aeruginosa phzd, an isochorismatase from the phenazine biosynthetic pathway. Biochemistry 42:5684–5693

    Article  CAS  PubMed  Google Scholar 

  71. Parsons JF, Calabrese K, Eisenstein E, Ladner JE (2004) Structure of the phenazine biosynthesis enzyme PhzG. Acta Crystallogr D Biol Crystallogr 60:2110–2113

    Article  PubMed  CAS  Google Scholar 

  72. Pathom-Aree W, Nogi Y, Ward AC, Horikoshi K, Bull AT, Goodfellow M (2006) Dermacoccus barathri sp. nov. and Dermacoccus profundi sp. nov., novel actinomycetes isolated from deep-sea mud of the mariana trench. Int J Syst Evol Microbiol 56:2303–2307

    Article  CAS  PubMed  Google Scholar 

  73. Patrick L (2006) Lead toxicity part II: the role of free radical damage and the use of antioxidants in the pathology and treatment of lead toxicity. Altern Med Rev 11:114–127

    PubMed  Google Scholar 

  74. Patriquin GM, Banin E, Gilmour C, Tuchman R, Greenberg EP, Poole K (2008) Influence of quorum sensing and iron on twitching motility and biofilm formation in Pseudomonas aeruginosa. J Bacteriol 190:662–671

    Article  CAS  PubMed  Google Scholar 

  75. Penesyan A, Kjelleberg S, Egan S (2010) Development of novel drugs from marine surface associated microorganisms. Mar Drugs 8:438–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Pierson LS, Thomashow LS (1992) Cloning and heterologous expression of the phenazine biosynthetic locus from Pseudomonas aureofaciens 30-84. Mol Plant-Microbe Interact 5:330–339

    Article  CAS  PubMed  Google Scholar 

  77. Pimentel-Elardo SM, Kozytska S, Bugni TS, Ireland CM, Moll H, Hentschel U (2010) Anti-parasitic compounds from Streptomyces sp. strains isolated from mediterranean sponges. Mar Drugs 8:373–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Piomelli S (2002) Childhood lead poisoning. Pediatr Clin North Am 49:1285–1304

    Article  PubMed  Google Scholar 

  79. Pospisil S, Benada O, Kofronova O, Petricek M, Janda L, Havlicek V (1998) Kytococcus sedentarius (formerly Micrococcus sedentarius) and Dermacoccus nishinomiyaensis (formerly Micrococcus nishinomiyaensis) produce monensins, typical Streptomyces cinnamonensis metabolites. Can J Microbiol 44:1007–1011

    Article  CAS  PubMed  Google Scholar 

  80. Pospíšil S, Sedmera P, Havlícek V, Tax J (1994) Production of 26-deoxymonensins A and B by Streptomyces cinnamonensis in the presence of metyrapone. Appl Environ Microbiol 60:1561–1564

    PubMed  PubMed Central  Google Scholar 

  81. Pressman BC, Deguzman NT (1975) Biological applications of ionophores. Annu Rev Biochem 264:373–386

    CAS  Google Scholar 

  82. Price-Whelan A, Dietrich LE, Newman DK (2006) Rethinking ‘secondary’ metabolism: physiological roles for phenazine antibiotics. Nat Chem Biol 2:71–78

    Article  CAS  PubMed  Google Scholar 

  83. Radko L, Cybulski W, Rzeski W (2013) Cytoprotective effect of silybin against lasalocid-induced toxicity in HepG2 cells. Pol J Vet Sci 16:275–282

    CAS  PubMed  Google Scholar 

  84. Radko L, Cybulski W, Rzeski W (2013) The protective effect of silybin against lasalocid cytotoxic exposure on chicken and rat cell lines. BioMed Res Int 2013:1–8

    Article  CAS  Google Scholar 

  85. Ranjbariyan A, Shams-Ghahfarokhi M, Razzaghi-Abyaneh M (2014) Antifungal activity of a soil isolate of Pseudomonas chlororaphis against medically important dermatophytes and identification of a phenazine-like compound as its bioactive metabolite. J Mycol Med 24:E57–E64

    Article  CAS  PubMed  Google Scholar 

  86. Rezanka T, Klanova K, Podojil M, Vanek Z (1984) Fatty acids of Streptomyces cinnamonensis, producer of monensin. Folia Microbiol 29:217–221

    Article  CAS  Google Scholar 

  87. Rogan MP, Taggart CC, Greene CM, Murphy PG, O’Neill SJ, McElvaney NG (2004) Loss of microbicidal activity and increased formation of biofilm due to decreased lactoferrin activity in patients with cystic fibrosis. J Infect Dis 190:1245–1253

    Article  CAS  PubMed  Google Scholar 

  88. Romer A, Herbert RB (1982) Further observations on the source of nitrogen in phenazine biosynthesis. Z Naturforsch C Bio Sci 37:1070

    Google Scholar 

  89. Ruckmani A, Chakrabarti T (2011) Analysis of bacterial community composition of a spring water from the Western Ghats, India using culture dependent and molecular approaches. Curr Microbiol 62:7–15

    Article  CAS  PubMed  Google Scholar 

  90. Sanders T, Liu Y, Buchner V, Tchounwou PB (2009) Neurotoxic effects and biomarkers of lead exposure: a Review. Rev Environ Health 24:15–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340

    Article  Google Scholar 

  92. Simmons T, Andrianasolo E, McPhail K, Flatt P, Gerwick WH (2005) Marine natural products as anticancer drugs. Mol Cancer Ther 4:333–342

    CAS  PubMed  Google Scholar 

  93. Singh PK, Parsek MR, Greenberg EP, Welsh MJ (2002) A component of innate immunity prevents bacterial biofilm development. Nature 417:552–555

    Article  CAS  PubMed  Google Scholar 

  94. Stackebrandt E, Koch C, Gvozdiak O, Schumann P (1995) Taxonomic dissection of the genus Micrococcus: Kocuria gen. nov., Nesterenkonia gen. nov., Kytococcus gen. nov., Dermacoccus gen. nov., and Micrococcus Cohn 1872 gen. emend. Int J Syst Bacteriol 45:682–692

    Article  CAS  PubMed  Google Scholar 

  95. Stackebrandt E, Lewis B, Woese C (1980) The phylogenetic structure of the coryneform group of bacteria. Zentralbl Bakteriol 1:137–149

    Google Scholar 

  96. Stackebrandt E, Schumann P (2000) Description of Bogoriellaceae fam. nov., dermacoccaceae fam. nov., rarobacteraceae fam. nov. and sanguibacteraceae fam. nov. and emendation of some families of the suborder Micrococcineae. Int J Syst Evol Microbiol 50:1279–1285

    Article  CAS  PubMed  Google Scholar 

  97. Stewart ZA, Westfall M, Pietenpol JA (2003) Cell cycle dysregulation and anticancer therapy. Trends Pharmacol Sci 24:139–145

    Article  CAS  PubMed  Google Scholar 

  98. Subramani R, Aalbersberg W (2012) Marine actinomycetes: an ongoing source of novel bioactive metabolites. Microbiol Res 167:571–580

    Article  CAS  PubMed  Google Scholar 

  99. Thomashow LS, Weller DM (1988) Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici. J Bacteriol 170:3499–3508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Tumova L, Pombinho AR, Vojtechova M, Stancikova J, Gradl D, Krausova M, Sloncova E, Horazna M, Kriz V, Machonova O (2014) Monensin inhibits canonical Wnt signaling in human colorectal cancer cells and suppresses tumor growth in multiple intestinal neoplasia mice. Mol Cancer Ther 13:812–822

    Article  CAS  PubMed  Google Scholar 

  101. Van’t Land CW, Mocek U, Floss HG (1993) Biosynthesis of the phenazine antibiotics, the saphenamycins and esmeraldins, in Streptomyces antibioticus. J Org Chem 58:6576–6582

    Article  Google Scholar 

  102. Wagner M, Abdel-Mageed WM, Ebel R, Bull AT, Goodfellow M, Fiedler HP, Jaspars M (2014) Dermacozines H-J isolated from a deep-sea strain of Dermacoccus abyssi from Mariana Trench sediments. J Nat Prod 77:416–420

    Article  CAS  PubMed  Google Scholar 

  103. Wang Y, Wilks JC, Danhorn T, Ramos I, Croal L, Newman DK (2011) Phenazine-1-carboxylic acid promotes bacterial biofilm development via ferrous iron acquisition. J Bacteriol 193:3606–3617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Watts JE, Mcdonald R, Daniel R, Schreier HJ (2013) Examination of a culturable microbial population from the gastrointestinal tract of the wood-eating loricariid catfish Panaque nigrolineatus. Diversity 5:641–656

    Article  CAS  Google Scholar 

  105. Westley JW (1982) Polyether antibiotics: naturally occurring acid ionophores. Marcel Dekker, New York, pp 1–20

    Google Scholar 

  106. Weyens N, Beckers B, Schellingen K, Ceulemans R, Croes S, Janssen J, Haenen S, Witters N, Vangronsveld J (2013) Plant-associated bacteria and their role in the success or failure of metal phytoextraction projects: first observations of a field-related experiment. Microb Biotechnol 6:288–299

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Wittebolle L, Marzorati M, Clement L, Balloi A, Daffonchio D, Heylen K, De Vos P, Verstraete W, Boon N (2009) Initial community evenness favours functionality under selective stress. Nature 458:623–626

    Article  CAS  PubMed  Google Scholar 

  108. Xu Y (2013) Genomic features and regulation of phenazine biosynthesis in the rhizosphere strain Pseudomonas aeruginosa M18. In: Chincholkar S, Thomashow L (eds) Microbial Phenazines. Springer, Heidelberg, pp 177–198

    Chapter  Google Scholar 

  109. Yoon MJ, Kang YJ, Kim IY, Kim EH, Lee JA, Lim JH, Kwon TK, Choi KS (2013) Monensin, a polyether ionophore antibiotic, overcomes TRAIL resistance in glioma cells via endoplasmic reticulum stress, DR5 upregulation and c-FLIP down regulation. Carcinogenesis 34:1918–1928

    Article  CAS  PubMed  Google Scholar 

  110. Zeeuwen P, Boekhorst J, Van Den Bogaard EH, De Koning HD, Van De Kerkhof P, Saulnier DM, Van Swam II, Van Hijum S, Kleerebezem M, Schalkwijk J (2012) Microbiome dynamics of human epidermis following skin barrier disruption. Genome Biol 13:R101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manaf AlMatar.

Ethics declarations

Conflict of interest

The authors confirm that this article content has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AlMatar, M., Eldeeb, M., Makky, E.A. et al. Are There Any Other Compounds Isolated From Dermacoccus spp at All?. Curr Microbiol 74, 132–144 (2017). https://doi.org/10.1007/s00284-016-1152-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-016-1152-3

Keywords

Navigation