Skip to main content

Genomic Features and Regulation of Phenazine Biosynthesis in the Rhizosphere Strain Pseudomonas aeruginosa M18

  • Chapter
  • First Online:
Microbial Phenazines

Abstract

The genome of the rhizosphere strain Pseudomonas aeruginosa M18 contains specific accessory regions that benefit survival in rhizosphere niches in addition to the conserved core genome. The M18 genome contains two homologous phz gene clusters, phzA1-GI (phz1) and phzA2-G2 (phz2), each of which encodes essential enzymes responsible for phenazine-1-carboxylic acid (PCA) production. There exists a regulatory feedback loop of the two phz gene clusters, which are oppositely controlled directly by RsmA-mediated activity. Expression of the two phz gene clusters also is oppositely regulated by temperature: the phz2 cluster is more highly expressed at 28 °C, while the phz1 cluster is expressed more highly at 37 °C. The gene phzM, involved in the conversion of PCA to pyocyanin (PYO), is less efficiently expressed at 28 °C in a temperature-dependent and strain-specific manner, resulting predominantly in the production of PCA rather than PYO in M18. The genome was systematically engineered based on genetic regulation of the phz gene clusters and fermentation was optimized using surface response methodology. PCA yield in the modified strain can reach more than 5 g per liter during a 72 h fermentation. A new antifungal pesticide, Shenqinmeisu, with PCA as one of its main components, was first registered in China in 2011 and has been widely applied in commercial farm fields to protect rice and vegetables against diseases caused by Rhizoctonia solani, Fusarium oxysporum, and other phytopathogens. Sales in China have reached over 2.2 million US dollars during the last 2 years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anjaiah V, Cornelis P, Koedam N (2003) Effect of genotype and root colonization in biological control of fusarium wilts in pigeonpea and chickpea by Pseudomonas aeruginosa PNA1. Can J Microbiol 49(2):85–91

    Article  PubMed  CAS  Google Scholar 

  • Babitzke P, Romeo T (2007) CsrB sRNA family: sequestration of RNA-binding regulatory proteins. Curr Opin Microbiol 10:156–163

    Article  PubMed  CAS  Google Scholar 

  • Bano N, Musarrat J (2003) Characterization of a new Pseudomonas aeruginosa strain NJ-15 as a potential biocontrol agent. Curr Microbiol 46(5):324–328

    Article  PubMed  CAS  Google Scholar 

  • Berg G, Eberl L, Hartmann A (2005) The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environ Microbiol 7:1673–1685

    Article  PubMed  CAS  Google Scholar 

  • Brantl S (2004) Bacterial gene regulation: from transcription attenuation to riboswitches and ribozymes. Trends Microbiol 12:473–475

    Article  PubMed  CAS  Google Scholar 

  • Brencic A, Lory S (2009) Determination of the regulon and identification of novel mRNA targets of Pseudomonas aeruginosa RsmA. Mol Microbiol 72:612–632

    Article  PubMed  CAS  Google Scholar 

  • Brennan RG, Link TM (2007) Hfq structure, function and ligand binding. Curr Opin Microbiol 10:125–133

    Article  PubMed  CAS  Google Scholar 

  • Brouns SJ, Jore MM, Lundgren M et al (2008) Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321:960–964

    Article  PubMed  CAS  Google Scholar 

  • Burrowes E, Baysse C, Adams C et al (2006) Influence of the regulatory protein RsmA on cellular functions in Pseudomonas aeruginosa PAO1, as revealed by transcriptome analysis. Microbiology 152:405–418

    Article  PubMed  CAS  Google Scholar 

  • Buysens S, Heungens K, Poppe J et al (1996) Involvement of pyochelin and pyoverdin in suppression of pythium-induced damping-off of tomato by Pseudomonas aeruginosa 7NSK2. Appl Environ Microbiol 62(3):865–871

    PubMed  CAS  Google Scholar 

  • Chen Y, Wang Y, Huang XQ et al (2008) Las-like quorum-sensing system negatively regulates both pyoluteorin and phenazine-1-carboxylic acid production in Pseudomonas sp. M18. Sci China C Life Sci 51(2):174–181

    Article  PubMed  CAS  Google Scholar 

  • Chin-A-Woeng TF, Bloemberg GV, Mulders IH et al (2000) Root colonization by phenazine-1-carboxamide producing bacterium Pseudomonas chlororaphis PCL1391 is essential for biocontrol of tomato foot and root rot. Mol Plant-Microbe Interact 13:1340–1345

    Article  PubMed  CAS  Google Scholar 

  • Chin-A-Woeng TF, Thomas-Oates JE, Lugtenberg BJ et al (2001) Introduction of the phzH gene of Pseudomonas chlororaphis PCL1391 extends the range of biocontrol ability of phenazine-1-carboxylic acid-producing Pseudomonas spp. strains. Mol Plant-Microbe Interact 14:1006–1015

    Article  PubMed  CAS  Google Scholar 

  • Chugani SA et al (2001) QscR, a modulator of quorum-sensing signal synthesis and virulence in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 98:2752–2757

    Article  PubMed  CAS  Google Scholar 

  • Delaney SM, Mavrodi DV, Bonsall RF et al (2001) phzO, a gene for biosynthesis of 2-hydrolyated phenazine compounds in Pseudomonas aureofaciens 30–84. J Bacteriol 183:318–327

    Article  PubMed  CAS  Google Scholar 

  • Dietrich LE, Price-Whelan A, Petersen A et al (2006) The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa. Mol Microbiol 61:1308–1321

    Article  PubMed  CAS  Google Scholar 

  • Dietrich LE, Teal TK, Price-Whelan A et al (2008) Redox-active antibiotics control gene expression and community behavior in divergent bacteria. Science 321:1203–1206

    Article  PubMed  CAS  Google Scholar 

  • Dwivedi D, Johri BN (2003) Antifungals from fluorescent pseudomonads: biosynthesis and regulation. Curr Sci 85:1693–1703

    CAS  Google Scholar 

  • Fajardo A, Martinez JL (2008) Antibiotics as signals that trigger specific bacterial responses. Curr Opin Microbiol 11:161–167

    Article  PubMed  CAS  Google Scholar 

  • Finnan S, Morrissey JP, O’Gara F et al (2004) Genome diversity of Pseudomonas aeruginosa isolates from cystic fibrosis patients and the hospital environment. J Clin Microbiol 42:5783–5792

    Article  PubMed  CAS  Google Scholar 

  • Fitzpatrick DA (2009) Lines of evidence for horizontal gene transfer of a phenazine producing operon into multiple bacterial species. J Mol Evol 68:171–185

    Article  PubMed  CAS  Google Scholar 

  • Fothergill JL, Panagea S, Hart CA et al (2007) Widespread pyocyanin over-production among isolates of a cystic fibrosis epidemic strain. BMC Microbiol 7:45

    Article  PubMed  Google Scholar 

  • Ge YH, Huang XQ, Wang SL et al (2004) Phenazine-1-carboxylic acid is negatively regulated and pyoluteorin positively regulated by gacA in Pseudomonas sp. M18. FEMS Microbiol Lett 237(1):41–47

    Article  PubMed  CAS  Google Scholar 

  • Ge YH, Pei D, Feng P et al (2007) Autoinduction of RpoS biosynthesis in the biocontrol strain Pseudomonas sp. M18. Curr Microbiol 54(2):97–101

    Article  PubMed  CAS  Google Scholar 

  • Gibson J, Sood A, Hogan DA (2009) Pseudomonas aeruginosa-Candida albicans interactions: localization and fungal toxicity of a phenazine derivative. Appl Environ Microbiol 75(2):504–513

    Article  PubMed  CAS  Google Scholar 

  • Greenhagen BT, Shi K, Robinson H et al (2008) Crystal structure of the pyocyanin biosynthetic protein phzS. Biochemistry 47:5281–5289

    Article  PubMed  CAS  Google Scholar 

  • Gurusiddaiah S, Weller DM, Sarkar A et al (1986) Characterization of an antibiotic produced by a strain of Pseudomonas fluorescens inhibitory to Gaeumannomyces graminis var. tritici and Pythium spp. Antimicrob Agents Chemother 29(3):488–495

    Article  PubMed  CAS  Google Scholar 

  • Heeb S, Haas D (2001) Regulatory roles of the GacS/GacA two-component system in plant-associated and other Gram-negative bacteria. Mol Plant-Microbe Interact 14:1351–1363

    Article  PubMed  CAS  Google Scholar 

  • Hernandez ME, Kappler A, Newman DK (2004) Phenazines and other redox-active antibiotics promote microbial mineral reduction. Appl Environ Microbiol 70:921–928

    Article  PubMed  CAS  Google Scholar 

  • Heurlier KF, Williams S, Heeb C et al (2004) Positive control of swarming, rhamnolipid synthesis, and lipase production by the posttranscriptional RsmA/RsmZ system in Pseudomonas aeruginosa PAO1. J Bacteriol 186:2936–2945

    Article  PubMed  CAS  Google Scholar 

  • Howell CR, Stipanovic RD (1980) Suppression of Pythium ultimum-induced damping-off of cotton seedlings by Pseudomonas fluorescens and its antibiotic, pyoluteorin. Phytopathology 70:712–715

    Article  CAS  Google Scholar 

  • Hu HB, Xu YQ, Chen F et al (2005) Isolation and characterization of a new fluorescent Pseudomonas strain that produces both phenazine 1-carboxylic acid and pyoluteorin. J Microbiol Biotechnol 15(1):86–90

    CAS  Google Scholar 

  • Huang XQ, Zhu DH, Ge YH et al (2004) Identification and characterization of pltZ, a gene involved in the repression of pyoluteorin biosynthesis in Pseudomonas sp. M18. FEMS Microbiol Lett 232(2):197–202

    Article  PubMed  CAS  Google Scholar 

  • Huang XQ, Yan A, Zhang XH et al (2006) Identification and characterization of a putative ABC transporter PltHIJKN required for pyoluteorin production in Pseudomonas sp. M18. Gene 376(1):68–78

    Article  PubMed  CAS  Google Scholar 

  • Huang XQ, Zhang XH, Xu YQ (2008) PltR expression modulated by the global regulators GacA, RsmA, LasI and RhlI in Pseudomonas sp. M18. Res Microbiol 159(2):128–136

    Article  PubMed  CAS  Google Scholar 

  • Huang JF, Xu YQ, Zhang HY et al (2009) Temperature-dependent expression of phzM and its regulatory genes lasI and ptsP in rhizosphere isolate Pseudomonas sp. strain M18. Appl Environ Microbiol 75(20):6568–6580

    Article  PubMed  CAS  Google Scholar 

  • Klockgether J, Munder A, Neugebauer J et al (2010) Genome diversity of Pseudomonas aeruginosa PAO1 laboratory strains. J Bacteriol 192:1113–1121

    Article  PubMed  CAS  Google Scholar 

  • Kumar RS, Ayyadurai N, Pandiaraja P et al (2005) Characterization of antifungal metabolite produced by a new strain Pseudomonas aeruginosa PUPa3 that exhibits broad-spectrum antifungal activity and biofertilizing traits. J Appl Microbiol 98(1):145–154

    Article  PubMed  CAS  Google Scholar 

  • Lapouge K, Sineva E, Lindell M et al (2007) Mechanism of hcnA mRNA recognition in the Gac/Rsm signal transduction pathway of Pseudomonas fluorescens. Mol Microbiol 66:341–356

    Article  PubMed  CAS  Google Scholar 

  • Lapouge K, Schubert M, Allain FH et al (2008) Gac/Rsm signal transduction pathway of gamma-proteobacteria: from RNA recognition to regulation of social behaviour. Mol Microbiol 67:241–253

    Article  PubMed  CAS  Google Scholar 

  • Latifi A, Foglino M, Tanaka K et al (1996) A hierarchical quorum-sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhIR (VsmR) to expression of the stationary-phase sigma factor RpoS. Mol Microbiol 21:1137–1146

    Article  PubMed  CAS  Google Scholar 

  • Lee DG, Urbach JM, Wu G et al (2006) Genomic analysis reveals that Pseudomonas aeruginosa virulence is combinatorial. Genome Biol 7(10):R90

    Article  PubMed  Google Scholar 

  • Li YQ, Jiang HX, Du XL et al (2010) Enhancement of phenazine-1-carboxylic acid production using batch and fed-batch culture of gacA inactivated Pseudomonas sp. M18G. Bioresource Technol 101(10):3649–3656

    Article  CAS  Google Scholar 

  • Li YQ, Du XL, Lu ZJ et al (2011) Regulatory feedback loop of two phz gene clusters through 5′-untranslated regions in Pseudomonas sp. M18. PLoS ONE 6(4):e19413

    Article  PubMed  CAS  Google Scholar 

  • Linares JF, Gustafsson I, Baquero F et al (2006) Antibiotics as intermicrobial signaling agents instead of weapons. Proc Natl Acad Sci USA 103:19484–19489

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Cui Y, Mukherjee A et al (1998) Characterization of a novel RNA regulator of Erwinia carotovora ssp. carotovora that controls production of extracellular enzymes and secondary metabolites. Mol Microbiol 29:219–234

    Article  PubMed  CAS  Google Scholar 

  • Lu JS, Huang XQ, Li K et al (2009a) LysR family transcriptional regulator PqsR as repressor of pyoluteorin biosynthesis and activator of phenazine-1-carboxylic acid biosynthesis in Pseudomonas sp. M18. J Biotechnol 143:1–9

    Article  PubMed  CAS  Google Scholar 

  • Lu JS, Huang XQ, Zhang M et al (2009b) The distinct quorum sensing hierarchy of las and rhl in Pseudomonas sp. M18. Curr Microbiol 59(6):621–627

    Article  PubMed  CAS  Google Scholar 

  • Maddula VS, Pierson EA, Pierson LS III (2008) Altering the ratio of phenazines in Pseudomonas chlororaphis (aureofaciens) strain 30–84: effects on biofilm formation and pathogen inhibition. J Bacteriol 190:2759–2766

    Article  PubMed  CAS  Google Scholar 

  • Majdalani N, Vanderpool CK, Gottesman S (2005) Bacterial small RNA regulators. Crit Rev Biochem Mol Biol 40:93–113

    Article  PubMed  CAS  Google Scholar 

  • Mandal M, Breaker RR (2004) Gene regulation by riboswitches. Nat Rev Mol Cell Bio 5:451–463

    Article  CAS  Google Scholar 

  • Marraffini LA, Sontheimer EJ (2008) CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322:1843–1845

    Article  PubMed  CAS  Google Scholar 

  • Mathee K, Narasimhan G, Valdes C et al (2008) Dynamics of Pseudomonas aeruginosa genome evolution. Proc Natl Acad Sci USA 105(8):3100–3105

    Article  PubMed  CAS  Google Scholar 

  • Mavrodi DV, Ksenzenko VN, Bonsall RF et al (1998) A seven-gene locus for synthesis of phenazine-1-carboxylic acid by Pseudomonas fluorescens 2-79. J Bacteriol 180:2541–2548

    PubMed  CAS  Google Scholar 

  • Mavrodi DV, Bonsall RF, Delaney SM et al (2001) Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. J Bacteriol 183:6454–6465

    Article  PubMed  CAS  Google Scholar 

  • Mavrodi DV, Blankenfeldt W, Thomashow LS (2006) Phenazine compounds in fluorescent Pseudomonas spp. biosynthesis and regulation. Annu Rev Phytopathol 44:417–445

    Article  PubMed  CAS  Google Scholar 

  • Mavrodi DV, Peever TL, Mavrodi OV et al (2010) Diversity and evolution of the phenazine biosynthesis pathway. Appl Environ Microbiol 76:866–879

    Article  PubMed  CAS  Google Scholar 

  • Mavrodi DV, Parejko JA, Mavrodi OV et al (2012) Recent insight into the diversity, frequency and ecological roles of phenazines in fluorescent Pseudomonas spp. Environ Microbiol 15(3):675–686

    Article  PubMed  Google Scholar 

  • Mazzola M, Cook RJ, Thomashow LS et al (1992) Contribution of phenazine antibiotic biosynthesis to the ecological competence of fluorescent pseudomonads in soil habitats. Appl Environ Microbiol 58:2616–2624

    PubMed  CAS  Google Scholar 

  • Mlot C (2009) Microbiology. Antibiotics in nature: beyond biological warfare. Science 324:1637–1639

    Article  PubMed  CAS  Google Scholar 

  • Monteiro-Vitorello CB, de Oliveira MC, Zerillo MM et al (2005) Xylella and Xanthomonas mobil′omics. OMICS 9:146–159

    Article  PubMed  CAS  Google Scholar 

  • Nowak-Thompson B, Chaney N, Wing JS et al (1999) Characterization of the pyoluteorin biosynthetic gene cluster of Pseudomonas fluorescens Pf-5. J Bacteriol 181(7):2166–2174

    PubMed  CAS  Google Scholar 

  • Park GK, Lim JH, Kim SD et al (2012) Elucidation of antifungal metabolites produced by Pseudomonas aurantiaca IB5-10 with broad-spectrum antifungal activity. J Microbiol Biotechnol 22(3):326–330

    Article  PubMed  CAS  Google Scholar 

  • Parsons JF, Greenhagen BT, Shi K et al (2007) Structural and functional analysis of the pyocyanin biosynthetic protein phzM from Pseudomonas aeruginosa. Biochemistry 46:1821–1828

    Article  PubMed  CAS  Google Scholar 

  • Pierson LS III, Pierson EA (2010) Metabolism and function of phenazines in bacteria: impacts on the behavior of bacteria in the environment and biotechnological processes. Appl Microbiol Biotechnol 86:1659–1670

    Article  PubMed  CAS  Google Scholar 

  • Pierson LS III, Keppenne VD, Wood DW (1994) Phenazine antibiotic biosynthesis in Pseudomonas aureofaciens 30-84 is regulated by phzR in response to cell density. J Bacteriol 176:3966–3974

    PubMed  CAS  Google Scholar 

  • Pirnay JP, Bilocq F, Pot B et al (2009) Pseudomonas aeruginosa population structure revisited. PLoS ONE 4:e7740

    Article  PubMed  Google Scholar 

  • Price-Whelan A, Dietrich LE, Newman DK (2006) Rethinking secondary metabolism: physiological roles for phenazine antibiotics. Nat Chem Biol 2:71–78

    Article  PubMed  CAS  Google Scholar 

  • Recinos DA, Sekedat MD, Hernandez A et al (2012) Redundant phenazine operons in Pseudomonas aeruginosa exhibit environment-dependent expression and differential roles in pathogenicity. Proc Natl Acad Sci USA 109(47):19420–19425

    Article  PubMed  CAS  Google Scholar 

  • Reimmann C, Beyeler M, Latifi A et al (1997) The global activator GacA of Pseudomonas aeruginosa PAO1 positively controls the production of the autoinducer N-butyryl-homoserine lactone and the formation of the virulence factors pyocyanin, cyanide, and lipase. Mol Microbiol 24:309–319

    Article  PubMed  CAS  Google Scholar 

  • Ren B, Shen HF, Lu ZJ et al (2013) The expression of phzA2-G2 transcript is activated directly by Pseudomonas aeruginosa RsmA. PLoS ONE ( under revision)

    Google Scholar 

  • Reuter JS, Mathews DH (2010) RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinformatics 11: 129

    Google Scholar 

  • Roy PH, Tetu SG, Larouche A et al (2010) Complete genome sequence of the multiresistant taxonomic outlier Pseudomonas aeruginosa PA7. PLoS ONE 5(1):e8842

    Article  PubMed  Google Scholar 

  • Selezska K, Kazmierczak M, Musken M et al (2012) Pseudomonas aeruginosa population structure revisited under environmental focus: impact of water quality and phage pressure. Environ Microbiol 14:1952–1967

    Article  PubMed  CAS  Google Scholar 

  • Shao Y, He X, Harrison EM et al (2010) GenomeSubtractor: a web-based tool for parallel in silico subtractive hybridization analysis of multiple bacterial genomes. Nucleic Acids Res 38(Suppl):W194–W200

    Article  PubMed  CAS  Google Scholar 

  • Smirnov V, Kiprianova E (1990) Bacteria of Pseudomonas genus. Naukova Dumka, Kiev

    Google Scholar 

  • Sonnleitner E, Haas D (2011) Small RNAs as regulators of primary and secondary metabolism in Pseudomonas species. Appl Microbiol Biotechnol 91:63–79

    Article  PubMed  CAS  Google Scholar 

  • Storz G, Altuvia S, Wassarman KM (2005) An abundance of RNA regulators. Annu Rev Biochem 74:199–217

    Article  PubMed  CAS  Google Scholar 

  • Stover CK, Pham XQ, Erwin AL et al (2000) Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406(6799):959–964

    Article  PubMed  CAS  Google Scholar 

  • Su JJ, Zhou Q, Zhang HY et al (2010) Medium optimization for phenazine-1-carboxylic acid production by a gacA qscR double mutant of Pseudomonas sp. M18 using response surface methodology. Bioresource Technol 101(11):4089–4095

    Article  CAS  Google Scholar 

  • Thomashow LS, Weller DM (1998) Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici. J Bacteriol 170:3499–3508

    Google Scholar 

  • Thomashow LS, Weller DM, Bonsall RF et al (1990) Production of the antibiotic phenazine-1-carboxylic acid by fluorescent Pseudomonas species in the rhizosphere of wheat. Appl Environ Microbiol 56:908–912

    PubMed  CAS  Google Scholar 

  • Timms-Wilson TM, Ellis RJ, Renwick A et al (2000) Chromosomal insertion of phenazine-1-carboxylic acid biosynthetic pathway enhances efficacy of damping-off disease control by Pseudomonas fluorescens. Mol Plant-Microbe Interact 13:1293–1300

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Huang XQ, Hu HB et al (2008) QscR acts as an intermediate in gacA-dependent regulation of PCA biosynthesis in Pseudomonas sp. M-18. Curr Microbiol 56(4):339–345

    Article  PubMed  CAS  Google Scholar 

  • Wang GH, Huang XQ, Li SN et al (2012) The RNA chaperone Hfq regulates antibiotic biosynthesis in the rhizobacterium Pseudomonas aeruginosa M18. J Bacteiol 194(10):2443–2457

    Article  CAS  Google Scholar 

  • Waters LS, Storz G (2009) Regulatory RNAs in bacteria. Cell 136:615–628

    Article  PubMed  CAS  Google Scholar 

  • Wei BL, Brun-Zinkernagel AM, Simecka JW et al (2001) Positive regulation of motility and flhDC expression by the RNA-binding protein CsrA of Escherichia coli. Mol Microbiol 40:245–256

    Article  PubMed  CAS  Google Scholar 

  • Winkler WC, Breaker RR (2005) Regulation of bacterial gene expression by riboswitches. Annu Rev Microbiol 59:487–517

    Article  PubMed  CAS  Google Scholar 

  • Winstanley C, Langille MG, Fothergill JL et al (2009) Newly introduced genomic prophage islands are critical determinants of in vivo competitiveness in the Liverpool epidemic strain of Pseudomonas aeruginosa. Genome Res 19(1):12–23

    Article  PubMed  CAS  Google Scholar 

  • Wu DQ, Ye J, Ou HY et al (2011) Genomic analysis and temperature-dependent transcriptome profiles of the rhizosphere originating strain Pseudomonas aeruginosa M18. BMC Genomics 12:438

    Article  PubMed  CAS  Google Scholar 

  • Wu DQ, Li YQ, Xu YQ (2012) Comparative analysis of temperature-dependent transcriptome of Pseudomonas aeruginosa strains from rhizosphere and human niches. Appl Microbiol Biotechnol. doi:10.1007/s00253-012-4466-5

    Google Scholar 

  • Yan A, Huang XQ, Liu HM et al (2007) An rhl-like quorum-sensing system negatively regulates pyoluteorin production in Pseudomonas sp. M18. Microbiology 153(Pt 1):16–28

    Article  PubMed  CAS  Google Scholar 

  • Yang SW, Lin LJ, Cordell GA et al (1999) O- and N-methylation in the biosynthesis of staurosporine. J Nat Prod 62:1551–1553

    Article  PubMed  CAS  Google Scholar 

  • Zhang XH, Wang SL, Geng HF et al (2005) Differential regulation of rsmA gene on biosynthesis of pyoluteorin and phenazine-1-carboxylic acid in Pseudomonas sp. M18. World J Microbiol Biotechnol 21(6):883–889

    Article  Google Scholar 

  • Zhou Q, Su JJ, Jiang HX et al (2010) Optimization of phenazine-1-carboxylic acid production by a gacA/qscR-inactivated Pseudomonas sp. M18GQ harboring pME6032phz using response surface methodology. Appl Microbiol Biotechnol 86(6):1761–1773

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuquan Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Xu, Y. (2013). Genomic Features and Regulation of Phenazine Biosynthesis in the Rhizosphere Strain Pseudomonas aeruginosa M18. In: Chincholkar, S., Thomashow, L. (eds) Microbial Phenazines. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40573-0_9

Download citation

Publish with us

Policies and ethics