Skip to main content
Log in

Thermophilin 110: A Bacteriocin of Streptococcus thermophilus ST110

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A screen of thermophilic lactic acid bacteria identified Streptococcus thermophilus strain ST110 as the putative producer of a bacteriocin with high level of activity against pediococci. Thermophilin 110 was isolated from culture supernatant after 16 h of growth and partially purified by a chloroform extraction procedure. The bacteriocin inhibited the growth of several lactic acid bacteria and in the case of Pediococcus acidilactici, it induced cell lysis with the concomitant release of OD260 - absorbing material and intracellular enzymes. SDS-PAGE analysis revealed two components with estimated sizes between 4.0 kDa and 4.5 kDa, respectively, with possible involvement in bacteriocin activity as indicated by agar overlay assays with P. acidilactici as the target organism. Thermophilin 110 was inactivated by several proteolytic enzymes and also by α-amylase, which indicated the putative requirement of a glycosidic component for activity. The bacteriocin produced by S. thermophilus may be especially useful in the food processing industries to control spoilage caused by pediococci.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Literature Cited

  1. Aguirre M, Collins MD (1993) Lactic acid bacteria and human clinical infection J Appl Bacteriol 75:95–107

    PubMed  Google Scholar 

  2. Aktypis A, Kalantzopoulos G, Huis in’t Veld JHJ, ten Brink B (1998) Purification and characterization of thermophilin T, a novel bacteriocin produced by Streptococcus thermophilus ACA-DC 0040 J Appl Microbiol 84:568–576

    Article  PubMed  Google Scholar 

  3. Barney M, Volgyi A, Navarro A, Ryder D (2001) Riboprinting and 16S rRNA gene sequencing for identification of brewery Pediococcus isolates Appl Environ Microbiol 67:553–560

    Article  PubMed  Google Scholar 

  4. Barton LL, Rider ED, Coen RW (2001) Bacteremic infection with Pediococcus: vancomycin-resistant opportunist Pediatrics 107:775–776

    Article  PubMed  Google Scholar 

  5. Beneduce L, Spano G, Vernile A, Tarantino D, Massa S (2004) Molecular characterization of lactic acid populations associated with wine spoilage J Basic Microbiol 1:10–16

    Article  Google Scholar 

  6. Bhunia AK, Johnson MC, Ray B (1987) Direct detection of an antimicrobial peptide of Pediococcus acidilactici in sodium dodecyl sulfate-polyacrylamide gel electrophoresis J Ind Microbiol 2:319–322

    Article  Google Scholar 

  7. Bruno MEC, Montville TJ (1993) Common mechanistic action of bacteriocins from lactic acid bacteria Appl Environ Microbiol 59:3003–3010

    Google Scholar 

  8. Burianek LL, Yousef AE (2000) Solvent extraction of bacteriocins from liquid cultures Lett Appl Microbiol 31:193–197

    PubMed  Google Scholar 

  9. Cleveland J, Montville TJ, Nes IF, Chikindas ML (2001) Bacteriocins: safe, natural antimicrobials for food preservation Int J Food Microbiol 71:1–20

    PubMed  Google Scholar 

  10. Corcoran GD, Gibbons N, Mulvihill TE (1991) Septicaemia caused by Pediococcus pentosaceus: a new opportunistic pathogen J Infect 23:179–182

    PubMed  Google Scholar 

  11. Delves-Broughton J, Blackburn P, Evans RJ, Hugenholtz J (1996) Applications of the bacteriocin, nisin Antonie van Leewenhoek 69:193–202

    Article  Google Scholar 

  12. Dobson CM, Deneer H, Lee S, Hemmington S, Glaze S, Ziola B (2002) Phylogenetic analysis of the genus Pediococcus, including Pediococcus clauseii ssp. nov., a novel lactic acid bacterium isolated from beer Int J Syst Evol Microbiol 52:2003–2010

    Article  PubMed  Google Scholar 

  13. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances Anal Chem 28:350–356

    Article  Google Scholar 

  14. Facklam RR, Hollis D, Collins D (1989) Identification of Gram-positive coccal and coccobacillary vancomycin-resistant bacteria J Clin Microbiol 27:724–730

    PubMed  Google Scholar 

  15. Garneau S, Martin NI, Vederas JC (2002) Two-peptide bacteriocins produced by lactic acid bacteria Biochimie 84:577–592

    Article  PubMed  Google Scholar 

  16. Ivanova I, Miteva V, Stefanova TS, Pantev A, Budakov I, Danova S, Moncheva P, Nikolova I, Dousset X, Boyaval P (1998) Characterization of a bacteriocin produced by Streptococcus thermophilus 81 Int J Food Microbiol 42:147–158

    Article  PubMed  Google Scholar 

  17. Jesperson L, Jakobsen M (1996) Specific spoilage organisms in breweries and laboratory media for their detection Int J Food Microbiol 33:139–155

    Article  PubMed  Google Scholar 

  18. Klaenhammer TR, (1993) Genetics of bacteriocins produced by lactic acid bacteria FEMS Microbiol Rev 12:39–85

    Article  PubMed  Google Scholar 

  19. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent J Biol Chem 193:265–275

    PubMed  Google Scholar 

  20. Marciset O, Jeronimus-Stratingh MC, Mollet B, Poolman B (1997) Thermophilin 13, a nontypical antilisterial poration complex bacteriocin, that functions without a receptor J Biol Chem 272:14277–14284

    PubMed  Google Scholar 

  21. Martinez-Cuesta MC, Pelaez C, Juarez M, Requena T (1997) Autolysis of Lactococcus lactis ssp. lactis and Lactobacillus casei ssp. casei. Cell lysis caused by a crude bacteriocin Int J Food Microbiol 38:125–131

    Article  PubMed  Google Scholar 

  22. Martinez-Cuesta MC, Kok J, Herranz E, Pelaez C, Requena T, Buist G (2000) Requirement of autolytic activity for bacteriocin-induced lysis Appl Environ Microbiol 66:3174–3179

    Article  PubMed  Google Scholar 

  23. Marugg JD, Gonzalez CF, Kunka BS, Ledeboer AM, Pucci MJ, Toonen MY, Walker SA, Zoetmulder LC, Vanderbergh PA (1992) Cloning, expression and nucleotide sequence of genes involved in production of pediocin PA-1, a bacteriocin from Pediococcus acidilactici PAC1.0 Appl Environ Microbiol 58:2360–2367

    PubMed  Google Scholar 

  24. Mastro TD, Spika JS, Lozano P, Appel J, Facklam RR (1990) Vancomycin-resistant Pediococcus acidilactici: nine cases of bacteremia J Infect Dis 161:956–960

    PubMed  Google Scholar 

  25. Mathot AG, Beliard E, Thuault D (2003) Streptococcus thermophilus 580 produces a bacteriocin potentially suitable for inhibition of Clostridium tyrobutyricum in hard cheese J Dairy Sci 86:3068–3074

    PubMed  Google Scholar 

  26. Morgan SM, Ross RP, Hill C (1995) Bacteriolytic activity caused by the presence of a novel lactococcal plasmid encoding lactococcin A, B, and M Appl Environ Microbiol 61:2995–3001

    PubMed  Google Scholar 

  27. Ogden K, Tubb RS (1985) Inhibition of beer-spoilage lactic acid bacteria by nisin J Inst Brew 91:390–392

    Google Scholar 

  28. Ogden K, Waites MJ, Hammond JRM (1988) Nisin and brewing J Inst Brew 94:233–238

    Google Scholar 

  29. O’Sullivan L, Morgan SM, Ross RP, Hill C (2002) Elevated enzyme release from lactococcal starter cultures on exposure to the lantibiotic lacticin 481, produced by Lactococcus lactis DPC5552 J Dairy Sci 85:2130–2140

    PubMed  Google Scholar 

  30. Radler F, (1990) Possible use of nisin in winemaking. II. Experiments to control lactic acid bacteria in the production of wine Am J Enol Vitic 41:7–11

    Google Scholar 

  31. Riebel WJ, Washington JA (1990) Clinical and microbiologic characteristics of pediococci J Clin Microbiol 28:1348–1355

    PubMed  Google Scholar 

  32. Schoeman H, Vivier MA, Du Toit M, Dicks LM, Pretorius IS (1999) The development of bactericidal yeast strains by expressing the Pediococcus acidilactici pediocin gene (pedA) in Saccharomyces cerevisiae Yeast 15:647–656

    Article  PubMed  Google Scholar 

  33. Somkuti GA, Steinberg DH (1986) Distribution and analysis of plasmids in Streptococcus thermophilus J Ind Microbiol 1:157–163

    Article  Google Scholar 

  34. Somkuti GA, Steinberg DH (2002) Agarose/agar assay system for the selection of bacteriocin-producing lactic fermentation bacteria Biotechnol Lett 24:303–308

    Article  Google Scholar 

  35. Stiles ME (1996) Biopreservation by lactic acid bacteria Antonie van Leeuwenhoek 70:331–345

    Article  PubMed  Google Scholar 

  36. Tagg JR, McGiven AR (1971) Assay system for bacteriocins Appl Microbiol 21:943

    PubMed  Google Scholar 

  37. Villani F. Pepe O, Mauriello G, Salzano G, Moschetti G, Coppola S (1995) Antilisterial activity of thermophilin 347, a bacteriocin produced by Streptococcus thermophilus. Int J Food Microbiol 25:179–190

    Article  PubMed  Google Scholar 

  38. Ward DJ, Somkuti GA (1995) Characterization of a bacteriocin produced by Streptococcus thermophilus ST134 Appl Microbiol Biotechnol 43:330–335

    Article  PubMed  Google Scholar 

  39. Wittenberger CL, Angelo N (1970) Purification and properties of a fructose-1,6-diphosphate-activated lactate dehydrogenase from Streptococcus faecalis J Bacteriol 101:717–724

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank A. Nunez and L. Fortis for providing assistance with the MALDI-TOF-MS analyses of peptide samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George A. Somkuti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilbreth, S.E., Somkuti, G.A. Thermophilin 110: A Bacteriocin of Streptococcus thermophilus ST110. Curr Microbiol 51, 175–182 (2005). https://doi.org/10.1007/s00284-005-4540-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-005-4540-7

Keywords

Navigation