Skip to main content

Bacterial Pharmaceutical Products

  • Reference work entry
The Prokaryotes

Abstract

Bacterial pharmaceutical products include antibiotics, antitumor agents, immunomodulators, and enzyme inhibitors. Other bioactive products of bacterial origin are coccidiostatic agents, nematicides, and insecticides. In addition, Escherichia coli, the prototype of molecular biology, is one of the most important hosts for the production of pharmaceutical recombinant proteins.

The approach to antibiotic discovery, denoted as “screening,” proposed by Waksman in 1940, was so effective that by the end of the 1950s, members of all the main families of clinically useful antibiotics were discovered. In the following years, the screening concepts were refined, introducing methods to select organisms which were potential producers of novel antibiotics and orienting the screening toward biochemical targets rather than general activities. The approach was successful, and many interesting products were identified in the period of 1960–1980. In the following decades, the research was mainly driven by the need to stop the spread of antibiotic multiresistant strains due to the horizontal transmission of resistance genes. Some important success has been obtained, mainly by target-oriented modification of members of classical families of antibiotics.

Most of the clinically effective antitumor agents were discovered in the 1960s by testing against tumor cell lines the active metabolites which were too toxic for use as anti-infective drugs. Only recently, a new family of products, active by stabilizing microtubulins, has been discovered by a target-oriented screening.

Among the other bioactive metabolites, two products of Streptomyces have important clinical use as immunomodulators, and members of the avermectin family are largely used against nematode and arthropod infections. A family of exceptionally effective insecticides, the spinosins, receives an increasing share of the agricultural market.

Most of the bacteria producing therapeutically effective antibiotics are actinomycetes, organisms belonging to the order Actinomycetales. Most of the products are produced by member of the genus Streptomyces. The genetics and biochemistry of antibiotic production has been mainly studied in strains of this genus. Antibiotics are products of the secondary metabolism, a form of cellular chemical differentiation linked in time, and sharing some initiator genes with cell morphological differentiation. The biosynthetic pathways yielding the backbone of most molecules of actinomycete pharmaceutical products consist of five different polymerization mechanisms: (1) and (2) the iterative polyketide synthases and modular polyketide synthases formed from small carboxylic acids units, polyaromatic compounds, and aliphatic chains; (3) the thiotemplate mechanism of polypeptide synthesis, by which most of the peptide antibiotics are produced; (4) the ribosome-dependent amino acid polymerization, which synthesizes the peptide lantibiotics; and (5) the condensation of carbohydrate units forming the aminosaccharide antibiotics.

The genes governing the production of secondary metabolites are grouped in clusters, composed of structural genes encoding the enzymes catalyzing the synthesis of the molecule, and regulatory genes, determining the activation of the structural genes. During the growth phase of the Streptomyces life cycle, all the genes of the cluster are repressed. When the deprivation of an essential nutrient induces the onset of cell differentiation, a cascade of events activates the transcription of the regulatory genes, which in turn activate the genes governing the biosynthesis. Genetic studies have been essential in understanding the mechanisms of antibiotic synthesis regulation. Most relevant successes have been recently obtained by genetic engineering for the improvement of metabolite production, especially in orienting the production toward the preferred members of the metabolite complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baltz RH, MacHenney MA, Cantwell CA, Queener SW, Solemberg PJ (1997) Application of transposition mutagenesis in antibiotic producing streptomycetes. Ant v Leeuwenoek 71:179–187

    Article  CAS  Google Scholar 

  • Baltz RH, Brian P, Miao V, Wrigley SK (2006) Combinatorial biosynthesis of lipopeptide antibiotics in Streptomyces roseosporus. J Ind Microbiol Biotechnol 33:66–67

    Article  PubMed  CAS  Google Scholar 

  • Barriere JC, Berthaud N, Beyer D, Dutka-Malen S, Paris JM, Desnottes JF (1998) Recent developments in streptogramin research. Curr Pharm Design 4:155–180

    CAS  Google Scholar 

  • Bérdy J (2005) Bioactive microbial metabolites. J Antibiot 58:1–26

    Article  PubMed  Google Scholar 

  • Bibb M (1996) The regulation on antibiotic production in Streptomyces coelicolor A3(2). Microbiology 142:1335–1344

    Article  PubMed  CAS  Google Scholar 

  • Birnbaum J, Stapley EO, Miller AK, Wallick H, Hendlin D, Woodruff HB (1978) Cefoxitin, a semi-synthetic cephamycin: a microbiological overview. J Antimicrob Chemother 4:15–32

    Article  PubMed  CAS  Google Scholar 

  • Birnbaum J, Kahan FM, Kropp H, MacDonald JS (1985) Carbapenems, a new class of beta-lactam antibiotics: discovery and development of imipenem/cilastatin. Am J Med 78(Suppl 6A):3–21

    Article  PubMed  CAS  Google Scholar 

  • Boakes S, Cortés J, Appleyard AN, Rudd BA, Dawson MJ (2009) Organization of the genes encoding the biosynthesis of actagardine and engineering of a variant generation system. Mol Microb 72:1126–1136

    Article  CAS  Google Scholar 

  • Bollag DM, McQueney PA, Zhu J (1995) Epothilones, a new class of microtubule-stabilizing agents with a taxol-like mechanism of action. Cancer Res 55:2325–2333

    PubMed  CAS  Google Scholar 

  • Borel JF, Feurer C, Gabler HU, Stahelin H (1976) Biological effects of cyclosporin A: a new antilymphocytic agent. Agents Actions 6:468–475

    Article  PubMed  CAS  Google Scholar 

  • Borghi A, Coronelli C, Faniuolo F, Allievi G, Pallanza R, Gallo GG (1984) Teichomycins: new antibiotics from Actinoplanes teichomyceticus. Separation and characterization of the component teichomycin (teicoplanin). J Antibiot 37:615–620

    Article  PubMed  CAS  Google Scholar 

  • Breiman R, Butler J, Tenover F, Elliot J, Facklam R (1994) Emergence of drug-resistant pneumococcal infections in the United States. JAMA 271:1831–1835

    Article  PubMed  CAS  Google Scholar 

  • Brown AG (1986) Clavulanic acid, a novel β-lactamase inhibitor: a case-study in drug discovery and development. Drug Des Deliv 1:1–21

    PubMed  CAS  Google Scholar 

  • Cavalleri B, Pagani H, Volpe G, Selva E, Parenti F (1984) A-16686, a new antibiotic from Actinoplane. I. Fermentation, isolation and preliminary physico-chemical characteristics. J Antibiot 37:309–317

    Article  PubMed  CAS  Google Scholar 

  • Chary VK, de la Fuente JL, Leitao AL, Liras P, Martin JF (2000) Overexpression of the lat gene in Nocardia lactamdurans from strong heterologous promoters results in very high levels of lysine6-aminotransferase and up to two-fold increase of cephamycin C production. Appl Microbiol Biotechnol 53:282–288

    Article  PubMed  CAS  Google Scholar 

  • Chater KF, Bibb MJ (1997) Regulation of bacterial antibiotic production. In: Kleinkauf H, von Döhren H (eds) Biotechnology, vol 7. VCH Weinheim, New York, pp 57–105

    Chapter  Google Scholar 

  • Chatterjee S, Chatterjee S, Lads SJ, Phansalkar MS, Rupp RH, Ganguli BN, Fehlhaber HW, Kogler H (1992) Mersacidin a new antibiotic from Bacillus. Fermentation, isolation, purification and chemical characterization. J Antibiot 45:832–838

    Article  PubMed  CAS  Google Scholar 

  • Chen T, Arison B, Gullo V, Inamine E (1989) Further studies on the biosynthesis of the avermectins. J Ind Microbiol 4:231–238

    Article  CAS  Google Scholar 

  • Clark AM (1996) Natural products as a resource for new drugs. Pharmaceut Res 13:1133–1141

    Article  CAS  Google Scholar 

  • Coronelli C, White RJ, Lancini GC, Parenti F (1975) Lipiarmycin, a new antibiotic from Actinoplane. II. Isolation, chemical, biological and biochemical characterization. J Antibiot 28:253–259

    Article  PubMed  CAS  Google Scholar 

  • Coronelli C, Tamoni G, Lancini GC (1976) Gardimycin, a new antibiotic from Actinoplanes. II. Isolation and preliminary characterization. J Antibiot 29:507–510

    Article  PubMed  CAS  Google Scholar 

  • Cortes J, Wiesmann KE, Roberts GA, Brown MJ, Stauton J, Leadlay PF (1995) Repositioning of a domain in a modular polyketide synthase to promote specific chain cleavage. Science 268:1487–1489

    Article  PubMed  CAS  Google Scholar 

  • Cragg GM, Newman DJ, Snader KM (1997) Natural products in drug discovery and development. J Nat Prod 60:52–60

    Article  PubMed  CAS  Google Scholar 

  • Dansey JE (2006) Therapeutic targets: MTOR and related pathways. Cancer Biol Ther 5:1065–1075

    Article  Google Scholar 

  • Debono M, Abbott BJ, Molloy RM, Fukuda DS, Hunt AH, Daupert VM, Counter FT, Ott JL, Carrell CB, Howard LC, Boeck LD, Hamill RL (1988) Enzymatic and chemical modifications of lipopeptide antibiotic L21978; the synthesis and evaluation of daptomycin (LY1146032). J Antibiot 41:1093–1105

    Article  PubMed  CAS  Google Scholar 

  • Demain AL (1983) New applications of microbial products. Science 219:709–714

    Article  PubMed  CAS  Google Scholar 

  • Demain AL (1989) Function of secondary metabolites. In: Hershberger CL, Queener SW, Hegeman G (eds) Genetics and molecular biology of industrial microorganisms. ASM Press, Washington, DC, pp 1–11

    Google Scholar 

  • Demain AL, Vaishnav P (2009) Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv 27:297–306

    Article  PubMed  CAS  Google Scholar 

  • DiMasi J, Seibring M, Lasagna L (1994) New drug development in the United States from 1963 to 1992. Clin Pharmacol Ther 55:609–622

    Article  PubMed  CAS  Google Scholar 

  • Donadio S, Sosio M (2003) Strategies for combinatorial biosynthesis with modular polyketide synthases. Comb Chem High Throughput Screen 6:489–500

    Article  PubMed  CAS  Google Scholar 

  • Donadio S, Staver MJ, McAlpine JB, Swanson SJ, Katz L (1991) Modular organization of genes required for complex polyketide biosynthesis. Science 252:675–679

    Article  PubMed  CAS  Google Scholar 

  • Donadio S, McAlpine JB, Sheldon PA, Jackson MA, Katz L (1993) An erythromycin analog produced by reprogramming of polyketide synthesis. Proc Natl Acad Sci USA 90:7119–7123

    Article  PubMed  CAS  Google Scholar 

  • Dutton C, Gibson S, Goudie A, Holdom K, Pacey M, Ruddock J (1991) Novel avermectins produced by mutational biosynthesis. J Antibiot 44:357–365

    Article  PubMed  CAS  Google Scholar 

  • Ensign JC (1992) Introduction to actinomycetes. In: Balows A, Truper HG, Dworkin M, Harder W, Schleifer KE (eds) The prokaryotes, vol 1, 2nd edn. Springer, Berlin, pp 811–815

    Google Scholar 

  • Ferrer-Miralles N, Domingo-Espin J, Corcero JL, Vasquez E, Villaverde A (2009) Microbial factories for recombinant pharmaceuticals. Microb Cell Fact 8:17–25

    Article  PubMed  CAS  Google Scholar 

  • Fleming ID, Nisbet LJ, Brewer SJ (1982) Target directed antimicrobial screens. In: Bulock JD, Nisbet LJ, Winstanley DJ (eds) Bioactive microbial products: search and discovery. Academic, London, pp 107–130

    Google Scholar 

  • Giles FJ (2002) Gentuzumab ozogamicin: promise and challenge in patients with acute myeloid leukemia. Expert Rev Anticancer Ther 2:630–640

    Article  PubMed  CAS  Google Scholar 

  • Goldman DA, Weinstein RA, Wenzel RP, Tablan OC, Duma RJ, Gaynes RP, Schlosser J, Martone WJ (1996) Strategies to prevent and control the emergence and spread of antimicrobial-resistant microorganisms in hospitals. JAMA 275:234–240

    Article  Google Scholar 

  • Gong GL, Sun X, Liu XL, Hu W, Cao WR, Liu H (2007) Mutation and high-throughput screening for improving the production of epothilones of Sorangium. J Ind Microbiol Biotechnol 34:615–623

    Article  PubMed  CAS  Google Scholar 

  • Goodin S, Kane MP, Rubin EH (2004) Epothilones: mechanism of action and biological activity. J Clin Oncol 22:2015–2225

    Article  PubMed  CAS  Google Scholar 

  • Goudie AC, Evans NA, Gration KAF, Bishop BF, Gibson SP, Holdom KS, Kaye B, Wicks RS, Lewis D, Weatherley AJ, Bruce CI, Herbert A, Seymour DJ (1993) Doramectin-a potent novel endectocide. Vet Parasitol 49:5–15

    Article  PubMed  CAS  Google Scholar 

  • Hafner EW, Holley BW, Holdom KS, Lee E, Wax RG, Beck D, McArthur H, Wernau WC (1991) Branched-chain fatty acid requirement for avermectin production by a mutant of Streptomyces avermitilis lacking branched-chain 2-oxo acid dehydrogenase activity. J Antibiot 44:349–356

    Article  PubMed  CAS  Google Scholar 

  • Han SJ, Park SW, Park BW, Sim SJ (2008) Selective production of epothilone B by heterologous expression of propionyl-CoA synthetase in Sorangium cellulosum. J Microbiol Biotechnol 18:135–137

    PubMed  CAS  Google Scholar 

  • Haney ME Jr, Hoehn MM (1968) Monensin, a new biologically active compound. 1: discovery and isolation. Antimicrob Agents Chemother 7:349–352

    Google Scholar 

  • Hendlin D, Stapley EO, Jackson M, Wallick H, Miller AK, Wolf FJ, Miller T, Chaiet L, Kahan FM, Foltz EL, Woodruff HB, Mata JM, Hernandez S, Mochales S (1969) Phosphonomycin: a new antibiotic produced by strains of Streptomyces. Science 166:122–123

    Article  PubMed  CAS  Google Scholar 

  • Hesketh A, Chen WJ, Ryding J, Chang S, Bibb M (2007) The global role of ppGpp synthesis in morphological differentiation and antibiotic production in Streptomyces coelicolor A3(2). Genome Biol 8:R161

    Article  PubMed  CAS  Google Scholar 

  • Higgins DL, Chang R, Debobov DV, Leung J, Wu T, Krause KM, Sandvik E, Hubbard JM et al (2005) Telavancin, a multifunctional glycopeptides, disrupts both cell wall synthesis and cell membrane integrity in methicillin-resistant Staphylococcus aureus. Antimicrob Ag Chemother 49:1127–1134

    Article  CAS  Google Scholar 

  • Holland HD (1998) Evidence for life on earth more than 3850 million years ago. Science 275:38–39

    Article  Google Scholar 

  • Hopwood DA, Sherman DH (1990) Molecular genetics of polyketides and comparison with fatty acid biosynthesis. Annu Rev Genet 24:37–66

    Article  PubMed  CAS  Google Scholar 

  • Hopwood DA, Malpartida F, Kieser HM, Ikeda H, Duncan J, Fujui I, Rudd BAM, Floss HG, Omura S (1985) Production of “hybrid” antibiotics by genetic engineering. Nature 314:642–644

    Article  PubMed  CAS  Google Scholar 

  • Horinouchi S (2003) AfsR an integrator of signals that are sensed by multiple serine/threonine kinases in Streptomyces coelicolor A3(2). J Ind Microbiol Biotechnol 30:462–467

    Article  PubMed  CAS  Google Scholar 

  • Huang S, Bjornsti MA, Houghton PJ (2003) Rapamycins; mechanism of action and cellular resistance. Cancer Biol Ther 2:222–232

    PubMed  CAS  Google Scholar 

  • Huber BE (1989) Therapeutic opportunities involving cellular oncogenes: novel approaches fostered by biotechnology. FASEB J 3:5–13

    PubMed  CAS  Google Scholar 

  • Hudes GR (2009) Targeting mTOR in renal cell carcinoma. Cancer 115(10 Suppl):2313–2320

    Article  PubMed  CAS  Google Scholar 

  • Hutchinson CR (1997) Antibiotics from genetically engineered microorganisms. In: Strohl W (ed) Biotechnology of antibiotics, 2nd edn. Marcel Dekker, New York, pp 683–702

    Google Scholar 

  • Ikeda H, Omura S (1997) Avermectin biosynthesis. Chem Rev 97:2591–2609

    Article  PubMed  CAS  Google Scholar 

  • Imada C (2004) Enzyme inhibitors of marine microbial origin with pharmaceutical importance. Mar Biotechnol (NY) 6:193–198

    Article  CAS  Google Scholar 

  • Izumida H, Adachi K, Mihara A, Yasuzawa T, Sano H (1997) Hydroxyakalone, a novel xanthine oxidase inhibitor produced by a marine bacterium, Agrobacterium aurantiacum. J Antibiot 50:916–918

    Article  PubMed  CAS  Google Scholar 

  • Jack R, Gotz F, Jung G (1997) Lantibiotics. In: Kleinkauf H, von Döhren H (eds) Biotechnology, vol 7. VCH Weinheim, New York, pp 323–370

    Chapter  Google Scholar 

  • Jin ZH, Xu B, Lin SZ, Jin QC, Chen PL (2009) Enhanced production of spinosad in Saccharopolyspora spinosa by genome shuffling. Appl Biochem Biotechnol 159:655–663

    Article  PubMed  CAS  Google Scholar 

  • Kahan JS, Kahan FM, Geogelman R, Currie SA, Jackson M, Stapley EO, Miller TW, Hendlin D, Mochales S, Hernandez S, Woodruff HB, Birnbaum J (1979) Thienamycin, a new β-lactam antibiotic: discovery, taxonomy, isolation, and physical properties. J Antibiot 32:1–12

    Article  PubMed  CAS  Google Scholar 

  • Kao CM, Luo G, Katz L, Cane DE, Khosla C (1995) Manipulation of macrolide ring size by directed mutagenesis of a modular polyketide synthase. J Am Chem Soc 117:9105–9106

    Article  Google Scholar 

  • Kato JY, Miyahisa I, Mashiko M, Ohnishi Y, Horinouchi S (2004) A single target is sufficient to account for the biological effects of the A-factor receptor protein of Streptomyces griseus. J Bacteriol 186:2206–2211

    Article  PubMed  CAS  Google Scholar 

  • Katz L, Donadio S (1993) Polyketide synthesis: prospects for hybrid antibiotics. Ann Rev Microbiol 47:875–912

    Article  CAS  Google Scholar 

  • Kino T, Hatanaka H, Hashimoto M, Nishiyama M, Goto T, Okuhara M, Kohsaka M, Aoki H, Imanaka H (1987) FK-506, a novel immunosuppressant isolated from Streptomyces. 1: fermentation, isolation and physico-chemical and biological characteristics. J Antibiot 40:1249–1255

    Article  PubMed  CAS  Google Scholar 

  • Kirst HA (2010) The spinosyn family of insecticides: realizing the potential of natural product research. J Antibiot 63:101–111

    Article  PubMed  CAS  Google Scholar 

  • Kirst HA, Michel KH, Martin JW, Creemer LC, Chio EH, Yao RC, Nakatsukasa WM, Boeck L, Occolowitz JL, Paschal JW, Deeter JB, Jones ND, Thompson GD (1991) A83543A-D, unique fermentation-derived tetracyclic macrolides. Tetrahedron Lett 32:4839–4842

    Article  CAS  Google Scholar 

  • Kleinkauf H, von Döhren H (1987) Biosynthesis of peptide antibiotics. Ann Rev Microbiol 41:259–289

    Article  CAS  Google Scholar 

  • Lancini GC (2006) Forty years of antibiotic research at Lepetit: a personal journey. SIM News 56:192–212

    Google Scholar 

  • Lancini GC, Demain AL (1999) Secondary metabolism in bacteria: antibiotic pathways, regulation, and function. In: Lengeler JW, Drews G, Schlegel HG (eds) Biology of the prokaryotes. Thieme Verlag, Stuttgart, pp 627–651

    Google Scholar 

  • Lancini GC, Lorenzetti R (1993) Biotechnology of antibiotics and other bioactive microbial metabolites. Plenum Press, New York, pp 95–132

    Google Scholar 

  • Lancini GC, Parenti F, Gallo GG (1995) Antibiotics: a multidisciplinary approach. Plenum Press, New York

    Google Scholar 

  • LaVallie ER, DiBlasio EA, Kovacic S, Grant KL, Schendel PF, McCoy JM (1993) A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E. coli cytoplasm. Bio/Technology 11:187–193

    Article  PubMed  CAS  Google Scholar 

  • Lawrence S (2006) Biotech blockbusters consolidate markets. Nat Biotechnol 24:1466

    Article  PubMed  CAS  Google Scholar 

  • Lazzarini A, Cavaletti L, Toppo G, Marinelli F (2001) Potentialities of rare actinomycetes as producers of new antibiotics. Ant v Leeuwenhoek 79:399–405

    CAS  Google Scholar 

  • Little PS, Peddie BA (1978) Clinical use of cefoxitin, a new semisynthetic cephamycin. N Z Med J 88:46–49

    PubMed  CAS  Google Scholar 

  • Liu J, Farmer J, Lane W, Friedman J, Waissman I, Schreiber S (1991) Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell 66:807–815

    Article  PubMed  CAS  Google Scholar 

  • Madduri K, Kennedy J, Rivola G, Inventi-Solari A, Filippini S, Zanuso G, Colombo AL, Gewain KM, Occi JL, MacNeil DJ, Hutchinson CR (1998) Production of the antitumor drug epirubicin (4′ epidoxorubicin) and its precursor by a genetically engineered strain of Streptomyces peucetius. Nat Biotechnol 16:69–74

    Article  PubMed  CAS  Google Scholar 

  • Marsden AF, Wilkinson B, Cortès J, Dunster NJ, Stauton J, Leadlay PF (1998) Engineering broader specificity into an antibiotic-producing polyketide synthase. Science 279:199–202

    Article  PubMed  CAS  Google Scholar 

  • Martin JF (2004) Phosphate control of the biosynthesis of antibiotics and other secondary metabolites is mediated by the PhoR-PhoP system: an unfinished story. J Bacteriol 186:5197–5201

    Article  PubMed  CAS  Google Scholar 

  • McAlpine J (1998) Unnatural natural products by genetic manipulation. In: Sapienza DM, Savage LM (eds) Natural products II: new technologies to increase efficiency and speed. International Business Community, Southborough, MA, pp 251–278

    Google Scholar 

  • McArthur HIA (1998) The novel avermectin, doramectin – a successful application of mutasynthesis. In: Hutchinson CR, McAlpine J (eds) Proceedings, biotechnology of microbial products conference, (BMP 97), Society for Industrial Microbiology, Fairfax, VA, pp 43–48

    Google Scholar 

  • McDaniel R, Ebert-Khosla S, Hopwood DA, Khosla C (1993) Engineered biosynthesis of novel polyketides. Science 262:1546–1550

    Article  PubMed  CAS  Google Scholar 

  • McDaniel R, Ebert Khosla S, Hopwood DA, Khosla C (1994) Engineered biosynthesis of novel polyketides: actVII and actIVgenes encode aromatase and cyclase enzymes, respectively. J Am Chem Soc 116:10855–10859

    Article  CAS  Google Scholar 

  • McDaniel R, Ebert Khosla S, Hopwood DA, Khosla C (1995) Rational design of aromatic polyketide natural products by recombinant assembly of enzymatic subunits. Nature 375:549–554

    Article  PubMed  CAS  Google Scholar 

  • McDaniel R, Thamehaipenet A, Gustafsson C, Fu H, Betlach M, Ashley G (1999) Multiple genetic modifications of the erythromycin polyketide synthase to produce a library of novel natural products. Proc Natl Acad Sci USA 96:1846–1851

    Article  PubMed  CAS  Google Scholar 

  • Mendez C, Brana AF, Manzanal MB, Hardisson C (1985) Role of substrate mycelium in colony development in Streptomyces. Can J Microbiol 31:446–450

    Article  PubMed  CAS  Google Scholar 

  • Menzella HG, Reid R, Carney JR, Chandran SS, Reisinger SJ, Patel KG, Hopwood DA, Santi DV (2005) Combinatorial polyketide biosynthesis by de novo design and rearrangement of modular polyketide synthase genes. Nat Biotechnol 21:1171–1176

    Article  CAS  Google Scholar 

  • Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L (2004) Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 56:185–229

    Article  PubMed  CAS  Google Scholar 

  • Moore M (1992) Strategic alliances: technological value in pharmaceutical drug discovery. Biofut Eur 9:138–143

    Google Scholar 

  • Morris A, Kellner JD, Low DE (1998) The superbugs: evolution, dissemination and fitness. Curr Opin Microbiol 1:524–529

    Article  PubMed  CAS  Google Scholar 

  • Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:461–477

    Article  PubMed  CAS  Google Scholar 

  • Nguyen KT, He X, Alexander DC, Li C, Gu JQ, Mascio C, Van Praag A, Morti L, Chu M, Silverman JA, Brian P, Baltz RH (2010) Genetically engineered lipopeptide antibiotics related to A54145 and daptomycin with improved properties. Antmicrob Agents Chemother 54:1404–1413

    Article  CAS  Google Scholar 

  • Nichterlein T, Kretschmar M, Hof H (1996) RP 59500, a streptogramin derivative, is effective in murine listerosis. J Chemother 8:107–112

    PubMed  CAS  Google Scholar 

  • Ogawara D, Fukuda M, Nakamura Y, Kono S (2010) Efficacy and safety of amrubicin hydrochloride for treatment of relapsed small cell lung cancer. Cancer Manag Res 2:191–195

    PubMed  CAS  Google Scholar 

  • Olano C, Mendez C, Salas JA (2010) Post-PKS tailoring steps in natural product-producing actinomycetes from the perspective of combinatorial biosynthesis. Nat Prod Rep 27:571–616

    Article  PubMed  CAS  Google Scholar 

  • Pallanza R, Berti M, Goldstein BP, Mapelli E, Randisi E, Scotti R, Arioli V (1983) Teichomycin: in -vitro and in-vivo evaluation in comparison with other antibiotics. J Antimicrob Chemother 11:419–425

    Article  PubMed  CAS  Google Scholar 

  • Parekh R (1989) Polypeptide glycosylation and biotechnology. Biotech Eur 6:18–21

    Google Scholar 

  • Parenti F, Schito GC, Courvalin P (2000) Teicoplanin chemistry and microbiology. J Chemother 12(Suppl 5):5–14

    PubMed  Google Scholar 

  • Perez-Llarena FG, Liras P, Rodriguez-Garcia A, Martin JF (1997) A regulatory gene (ccaR) required for cephamycin and clavulanic acid production in Streptomyces clavuligerus: amplification results in overproduction of both β-lactam compounds. J Bacteriol 179:2053–2059

    PubMed  CAS  Google Scholar 

  • Piepersberg W, Distler J (1997) Aminoglycosides and sugar components in other secondary metabolites. In: Kleinkauf H, von Döhren H (eds) Biotechnology, vol 7. VCH Weinheim, New York, pp 397–488

    Chapter  Google Scholar 

  • Rawls RL (1998) Polyketides: research increases on modular synthesis of these biomolecules by enzymes. Chem Eng News 76:29–30

    Google Scholar 

  • Rodriguez L, Oelkers C, Aguirrezabalaga I, Brana AF, Rhor J, Mendez C, Salas JA (2000) Generation of hybrid elloramycin analogs by combinatorial biosynthesis using genes from anthracycline-type and macrolide biosynthetic pathways. J Mol Microbiol Biotechnol 2:271–276

    PubMed  CAS  Google Scholar 

  • Sarmientos P, Duchesne M, Denefle P, Bolziau J, Fromage N, Delporte N et al (1989) Synthesis and purification of active human tissue plasminogen activator from Escherichia coli. Bio/Technology 127:495–501

    Article  Google Scholar 

  • Scheinfeld N (2004) Telithromycin: a brief review of a new ketolide antibiotic. J Drugs Dermatol 3:409–413

    PubMed  Google Scholar 

  • Schneider A, Stachelhaus T, Marahiel MA (1998) Targeted alteration of the substrate specificity of peptide synthetases by rational module swapping. Mol Gen Genet 257:308–318

    Article  PubMed  CAS  Google Scholar 

  • Sola-Landa A, Moura RS, Martin JF (2003) The two component PhoR-PhoP system controls both primary metabolism and secondary metabolite biosynthesis in Streptomyces lividans. Proc Natl Acad Sci USA 100:6133–6138

    Article  PubMed  CAS  Google Scholar 

  • Sosio M, Bossi E, Bianchi A, Donadio S (2000) Multiple gene synthetase gene clusters in actinomycetes. Mol Gen Genet 264:213–221

    Article  PubMed  CAS  Google Scholar 

  • Stachelhaus T, Schneider A, Marahiel M (1995) Rational design of peptide antibiotics by targeted replacement of bacterial and fungal domains. Science 269:69–72

    Article  PubMed  CAS  Google Scholar 

  • Stapley EO (1982) Avermectins, antiparasitic lactones produced by Streptomyces avermitilis isolated from a soil in Japan. In: Umezawa H, Demain AL, Hata R, Hutchinson CR (eds) Trends in antibiotic research. Antibiotic Research Association, Tokyo, pp 154–170

    Google Scholar 

  • Stephens C, Shapiro L (1997) Bacterial protein secretion – a target for new antibiotics? Chem Biol 4:637–641

    Article  PubMed  CAS  Google Scholar 

  • Stinson SC (1996) Drug firms restock antibacterial arsenal. Chem Eng News 74:75–100

    Article  Google Scholar 

  • Strohl WR (1997) Biotechnology of antibiotics, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  • Strohl WR, Bartel PL, Li Y, Connor NC, Woodman RH (1991) Expression of polyketide biosynthesis and regulatory genes in heterologous streptomycetes. J Ind Microbiol 7:163–174

    Article  PubMed  CAS  Google Scholar 

  • Strohl WR, Woodruff RL, Monaghan D, Hendlin H, Mochales S, Demain AL, Liesch L (2001) The history of natural products research at Merck and Co., Inc. SIM News 51:5–19

    Google Scholar 

  • Stutzman-Engwall H, Colon S, Fedechko R, McArthur H, Pekrun K, Chen Y, Jenne S, La C, Thrin N, Kim S, Zang XY, Fox R, Gustafsson C, Krebber A (2005) Semi-synthetic DNA shuffling of aveC leads to improved industrial scale production of doramectin by Streptomyces avermitilis. Metab Eng 7:27–37

    Article  PubMed  CAS  Google Scholar 

  • Sum PE (2006) Case studies in current drug development: “glycylcyclines”. Curr Opin Chem Biol 10:374–379

    Article  PubMed  CAS  Google Scholar 

  • Sum PE, Sum FW, Projan SJ (1998) Recent developments in tetracycline antibiotics. Curr Pharm Des 4:119–132

    PubMed  CAS  Google Scholar 

  • Swartz JR (1996) Escherichia coli recombinant DNA technology. In: Neidhardt FC (ed) Escherichia coli and Salmonella: cellular and molecular biology, 2nd edn. American Society of Microbiology Press, Washington, DC, pp 1693–1711

    Google Scholar 

  • Takano E (2006) Gamma-butyrolactones: Streptomyces signalling molecules regulating antibiotic production and differentiation. Curr Opin Microbiol 9:287–294

    Article  PubMed  CAS  Google Scholar 

  • Tanaka H, Omura S (1997) Screening of novel receptor-active compounds of microbial origin. In: Rehm HJ, Reed G, Kleinkauf H, von Döhren H (eds) Biotechnology, vol 7, 2nd edn. VCH Weinheim, New York, pp 107–132

    Chapter  Google Scholar 

  • Tang L, Fu H, McDaniel R (2000) Formation of functional heterologous complexes using subunits from the picromycin, erythromycin and oleandomycin polyketide synthases. Chem Biol 7:77–84

    Article  PubMed  CAS  Google Scholar 

  • Tang Y, Lee TS, Khosla C (2004) Engineered biosynthesis of regioselectively modified aromatic polyketides using bimodular polyketide synthases. PLoS Biol 2:0228–0238

    Article  CAS  Google Scholar 

  • Tenover FC, Hughes JM (1996) The challenges of emerging infectious diseases. JAMA 275:300–304

    Article  PubMed  CAS  Google Scholar 

  • Thompson GD, Dutton R, Sparks TC (2000) Spinosad-a case study: an example from a natural products discovery program. Pest Manag Sci 56:696–702

    Article  CAS  Google Scholar 

  • Tomasz M (1995) Mitomycin C: small, fast and deadly (but very selective). Curr Biol 2:575–579

    CAS  Google Scholar 

  • Torsvik V, Sorheim R, Goksoyr J (1996) Total bacterial diversity in soil and sediment communities – a review. J Indust Microbiol 17:170–178

    Article  CAS  Google Scholar 

  • Truscheit E, Frommer W, Junge B, Müller L, Schmidt D, Wingender W (1981) Chemistry and biochemistry of microbial α-glucosidase inhibitors. Angew Chemie Internat Ed 20:744–761

    Article  Google Scholar 

  • Umezawa H (1972) Enzyme inhibitors of microbial origin. University Park Press, Baltimore

    Google Scholar 

  • Umezawa H (1982) Low molecular-weight inhibitors of microbial origin. Ann Rev Microbiol 36:75–99

    Article  CAS  Google Scholar 

  • Umezawa H, Maeda K, Takeuci T, Okami Y (1966) New antibiotics, bleomycin A and B. J Antibiot 19:200–209

    PubMed  CAS  Google Scholar 

  • Verdine GL (1996) The combinatorial chemistry of nature. Nature 384(Suppl):11–13

    PubMed  CAS  Google Scholar 

  • Vezina C, Kudelski A, Sehgal SN (1975) Rapamycin (AY 22,989), a new antifungal antibiotic. 1: taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot 28:721–726

    Article  PubMed  CAS  Google Scholar 

  • Waksman SA, Woodruff HB (1940) The soil as a source of microorganisms antagonistic to disease-producing bacteria. J Bacteriol 40:581–599

    PubMed  CAS  Google Scholar 

  • Waksman SA, Woodruff HB (1941) Actinomyces antibioticus, a new soil organism antagonistic to pathogenic and non-pathogenic bacteria. J Bacteriol 42:231–249

    PubMed  CAS  Google Scholar 

  • Weibel EK, Hadvary P, Hochuli E, Kupfer E, Lengsfeld H (1987) Lipstatin, an inhibitor of pancreatic lipase, produced by Streptomyces toxytricini. I. Producing organism, fermentation, isolation and biological activity. J Antibiot 40:1081–1085

    Article  PubMed  CAS  Google Scholar 

  • Weinstein MJ (2004) Micromonospora antibiotic discovery at schering/schering-plough (1961–1973). SIM News 54:56–66

    Google Scholar 

  • Weinstein MJ, Ludemann GM, Odem EM, Wagman GH (1963) Gentamicin, a new broad-spectrum antibiotic. Antimicrob Agents Chemother 161:1–7

    PubMed  CAS  Google Scholar 

  • Wesseling AC, Lago B (1981) Strain improvement by genetic recombination of cephamycin producers, Nocardia lactamdurans and Streptomyces griseus. Dev Ind Microbiol 22:641–651

    Google Scholar 

  • Westley JW (1977) Polyether antibiotics: versatile carboxylic acid ionophores produced by Streptomyces. Adv Appl Microbiol 22:177–223

    Article  PubMed  CAS  Google Scholar 

  • Woodruff HB, McDaniel LE (1958) Antibiotic approach in strategy of chemotherapy. Soc Gen Microbiol Symp 8:29–48

    Google Scholar 

  • Woodruff HB, Hernandez S, Stapley EO (1979) Evolution of antibiotic screening programme. Hindustan Antibiot Bull 21:71–84

    PubMed  CAS  Google Scholar 

  • Yu T, Shen Y, McDaniel R, Floss HG, Khosla C, Hopwood DA, Moore S (1998) Engineered biosynthesis of novel polyketides from Streptomyces spore pigment polyketide synthases. J Am Chem Soc 120:7749–7759

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnold L. Demain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Lancini, G., Demain, A.L. (2013). Bacterial Pharmaceutical Products. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31331-8_28

Download citation

Publish with us

Policies and ethics