Skip to main content
Log in

Structural phase transitions of clinoatacamite and the dynamic Jahn–Teller effect

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The crystal structure of clinoatacamite, ideally Cu2(OH)3Cl, has been studied using single-crystal X-ray diffraction and Raman scattering at variable temperature between 150 and 490 K in natural samples with different degrees of Co and Ni substitution. The monoclinic clinoatacamite crystal structure is closely related to the trigonal crystal structures of herbertsmithite, Cu3Zn(OH)6Cl2, and paratacamite, Cu3(Cu, Zn)(OH)6Cl2. Disappearance of clinoatacamite superstructure reflections close to a temperature of 400 K indicates the transition to a trigonal herbertsmithite-type phase in all crystals containing Co and Ni impurities. In these crystals, which are invariably twinned at room temperature, an intermediate phase is observed in the temperature range 360–400 K, which has the trigonal paratacamite crystal structure. Untwinned end-member clinoatacamite directly transforms to the herbertsmithite-type at T c = 445 K. Probability density functions of the oxygen and copper atoms as well as details from the Raman scattering measurements indicate that the interlayer Cu-coordination environment remains locally Jahn–Teller-distorted in the trigonal crystal structures with space group symmetries \(R\overline{3}\) and \(R\overline{3} m\) and that the transition from monoclinic to trigonal symmetry is driven by the dynamic Jahn–Teller effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Braithwaite RSW, Mereiter K, Paar WH, Clark AM (2004) Herbertsmithite, Cu3Zn(OH)6Cl2, a new species, and the definition of paratacamite. Mineral Mag 68:527–539

    Article  Google Scholar 

  • Burns PC, Hawthorne FC (1996) Static and dynamic Jahn–Teller effects in Cu2+ oxysalt minerals. Can Mineral 34:1089–1105

    Google Scholar 

  • Clissold ME, Leverett P, Williams PA, Hibbs DE, Nickel EH (2007) The structure of gillardite, the Ni-analogue of herbertsmithite, from Widgiemooltha, Western Australia. Can Mineral 45:317–320

    Article  Google Scholar 

  • Colman RH, Sinclair A, Wills AS (2011) Magnetic and crystallographic studies of Mg-herbertsmithite, γ-Cu3Mg(OH)6Cl2—a new S = 1/2 kagome magnet and candidate spin liquid. Chem Mater 23:1811–1817

    Article  Google Scholar 

  • Engelbrekt C, Malcho P, Andersen J, Zhang LJ, Stahl K, Li B, Hu J, Zhang JD (2014) Selective synthesis of clinoatacamite Cu2(OH)3Cl and tenorite CuO nanoparticles by pH control. J Nanopart Res 16:2562

    Article  Google Scholar 

  • Fleet ME (1975) The crystal structure of paratacamite, Cu2(OH)3Cl. Acta Crystallogr B31:183–187

    Article  Google Scholar 

  • Grice JD, Szymański JT, Jambor JL (1996) The crystal structure of clinoatacamite, a new polymorph of Cu2(OH)3Cl. Can Mineral 34:73–78

    Google Scholar 

  • Han T-H, Helton JS, Chu S, Nocera DG, Rodriguez-Rivera JA, Broholm C, Lee YS (2012) Fractionalized excitations in the spin-liquid state of a kagome-lattice antiferromagnet. Nature 492:406–410

    Article  Google Scholar 

  • Jambor JL, Dutrizac JE, Roberts AC, Grice JD, Szymański JT (1996) Clinoatacamite, a new polymorph of Cu2(OH)3Cl, and its relationship to paratacamite and “anarakite”. Can Mineral 34:61–72

    Google Scholar 

  • Kampf AR, Sciberras MJ, Williams PA, Dini M, Molina Donoso AA (2013a) Leverettite from the Torrecillas mine, Iquique Province, Chile: the co-analogue of herbertsmithite. Mineral Mag 77:3047–3054

    Article  Google Scholar 

  • Kampf AR, Sciberras MJ, Leverett P, Williams PA, Malcherek T, Schlüter J, Welch M, Dini M, Molina Donoso AA (2013b) Paratacamite-(Mg), Cu3(Mg, Cu)Cl2(OH)6; a new substituted basic copper chloride mineral from camerones, Chile. Mineral Mag 77:3113–3123

    Article  Google Scholar 

  • Kermarrec E, Mendels P, Bert F, Colman RH, Wills AS, Strobel P, Bonville P, Hillier A, Amato A (2011) Spin-liquid ground state in the frustrated kagome antiferromagnet MgCu3(OH)6Cl2. Phys Rev B 84:100401

    Article  Google Scholar 

  • Lee S-H, Kikuchi H, Qiu Y, Lake B, Huang Q, Habicht K, Kiefer K (2007) Quantum-spin-liquid states in the two-dimensional kagome antiferromagnets ZnxCu4−x(OD)6Cl2. Nat Mater 6:853–857

    Article  Google Scholar 

  • Liu X-D, Zheng X-G, Meng D-D, Xu X-L, Guo Q-X (2013) Raman spectroscopic study of the frustrated spin ½ antiferromagnet clinoatacamite. J Phys: Condens Matter 25:256003

    Google Scholar 

  • Malcherek T, Schlüter J (2009) Structures of the pseudo-trigonal polymorphs of Cu2(OH)3Cl. Acta Crystallogr B65:334–341

    Article  Google Scholar 

  • Malcherek T, Schlüter J (2010) Anatacamite from La Vendida mine, Sierra Gorda, Atacama desert, Chile: a triclinic polymorph of Cu2(OH)3Cl. Neues Jahrb Mineral Abh 187:307–312

    Article  Google Scholar 

  • Malcherek T, Bindi L, Dini M, Ghiara MR, Molina Donoso A, Nestola F, Rossi M, Schlüter J (2014) Tondiite, Cu3Mg(OH)6Cl2, the Mg-analog of herbertsmithite. Mineral Mag 78:583–590

    Article  Google Scholar 

  • Oswald HR, Guenter JR (1971) Crystal data on paratacamite, γ-Cu2(OH)3Cl. J Appl Crystallogr 4:530–531

    Article  Google Scholar 

  • Petřiček V, Dušek M, Palatinus L (2014) Crystallographic computing system JANA2006: general features. Z für Krist 229:345–352

    Google Scholar 

  • Schreurs AMM, Xian X, Kroon-Batenburg LMJ (2010) EVAL15: a diffraction data integration method based on ab initio predicted profiles. J Appl Crystallogr 43:70–82

    Article  Google Scholar 

  • Sciberras MJ, Leverett P, Williams PA, Hibbs DE, Downes PJ, Welch MD, Kampf AR (2013) Paratacamite-(Ni), Cu3(Ni, Cu)Cl2(OH)6, a new mineral from the Carr Boyd Rocks mine, Western Australia. Aust J Mineral 17:39–44

    Google Scholar 

  • Sciberras MJ, Leverett P, Williams PA, Schlüter J, Malcherek T, Welch MD, Downes PJ, Hibbs DE, Kampf AR (2016) Structural and compositional variations of basic Cu(II) chlorides in the herbertsmithite and gillardite structure field. Mineral Mag. doi:10.1180/minmag.2016.080.079

    Google Scholar 

  • Sheldrick GM (2008) SADABS. University of Göttingen, Germany

    Google Scholar 

  • Shores MP, Nytko EA, Bartlett BM, Nocera DG (2005) A structurally perfect S = 1/2 kagome antiferromagnet. J Am Chem Soc 127:13462–13463

    Article  Google Scholar 

  • Welch MD, Sciberras MJ, Williams PA, Leverett P, Schlüter J, Malcherek T (2014) A temperature-induced reversible transformation between paratacamite and herbertsmithite. Phys Chem Miner 41:33–48

    Article  Google Scholar 

  • Wildner M (1992) On the geometry of Co(II)O6 polyhedra in inorganic compounds. Z für Krist 202:51–70

    Article  Google Scholar 

  • Wills AS, Henry J-Y (2008) On the crystal and magnetic ordering structures of clinoatacamite, γ-Cu2(OD)3Cl, a proposed valence bond solid. J Phys Condens Matter 20:472206

    Article  Google Scholar 

  • Wulferding D, Lemmens P, Scheib P, Röder J, Mendels P, Chu S, Han T, Lee YS (2010) Interplay of thermal and quantum spin fluctuations in the kagome lattice compound herbertsmithite. Phys Rev B 82:144412

    Article  Google Scholar 

  • Zheng XG, Kawae T, Kashitani Y, Li CS, Tateiwa N, Takeda K, Yamada H, Xu CN, Ren Y (2005a) Unconventional magnetic transitions in the mineral clinoatacamite Cu2Cl(OH)3. Phys Rev B 71:052409

    Article  Google Scholar 

  • Zheng XG, Kubozono H, Nishiyama K, Higemoto W, Kawae T, Koda A, Xu CN (2005b) Coexistence of long-range order and spin fluctuation in geometrically frustrated clinoatacamite Cu2Cl(OH)3. Phys Rev Lett 95:057201

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Stefanie Heidrich and Peter Stutz for conducting the electron microprobe analysis and related sample preparation in Hamburg. M.D.W. would like to thank Dr. Marcus Origlieri (University of Arizona) for donating the exceptional clinoatacamite sample from the Lily Mine, Peru, for crystallographic study. The clinoatacamite sample from Chile was kindly provided by Mineralogisches Museum, CeNak, Universität Hamburg. Useful comments by Herta Effenberger and Luca Bindi helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Malcherek.

Electronic supplementary material

Crystal structure data (cif-format) with harmonic displacement factors for all temperatures and compositions given in Table 2, with anharmonic displacement factors for sample c2 at 435 K and with harmonic and anharmonic displacements for sample c0 at 490 K. Room-temperature crystal structure data for sample c1 and c3. Below is the link to the electronic supplementary material.

Supplementary material 1 (ZIP 837 kb)

Supplementary material 2 (ZIP 57 kb)

Supplementary material 3 (ZIP 164 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malcherek, T., Mihailova, B. & Welch, M.D. Structural phase transitions of clinoatacamite and the dynamic Jahn–Teller effect. Phys Chem Minerals 44, 307–321 (2017). https://doi.org/10.1007/s00269-016-0859-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-016-0859-9

Keywords

Navigation