Skip to main content

Advertisement

Log in

Puzzling calcite-III dimorphism: crystallography, high-pressure behavior, and pathway of single-crystal transitions

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

High-pressure phase transformations between the polymorphic forms I, II, III, and IIIb of CaCO3 were investigated by analytical in situ high-pressure high-temperature experiments on oriented single-crystal samples. All experiments at non-ambient conditions were carried out by means of Raman scattering, X-ray, and synchrotron diffraction techniques using diamond-anvil cells in the pressure range up to 6.5 GPa. The composite-gasket resistive heating technique was applied for all high-pressure investigations at temperatures up to 550 K. High-pressure Raman spectra reveal distinguishable characteristic spectral differences located in the wave number range of external modes with the occurrence of band splitting and shoulders due to subtle symmetry changes. Constraints from in situ observations suggest a stability field of CaCO3-IIIb at relatively low temperatures adjacent to the calcite-II field. Isothermal compression of calcite provides the sequence from I to II, IIIb, and finally, III, with all transformations showing volume discontinuities. Re-transformation at decreasing pressure from III oversteps the stability field of IIIb and demonstrates the pathway of pressure changes to determine the transition sequence. Clausius–Clapeyron slopes of the phase boundary lines were determined as: ΔPT = −2.79 ± 0.28 × 10−3 GPa K−1 (I–II); +1.87 ± 0.31 × 10−3 GPa K−1 (II/III); +4.01 ± 0.5 × 10−3 GPa K−1 (II/IIIb); −33.9 ± 0.4 × 10−3 GPa K−1 (IIIb/III). The triple point between phases II, IIIb, and III was determined by intersection and is located at 2.01(7) GPa/338(5) K. The pathway of transition from I over II to IIIb can be interpreted by displacement with small shear involved (by 2.9° on I/II and by 8.2° on II/IIIb). The former triad of calcite-I corresponds to the [20-1] direction in the P21/c unit cell of phase II and to [101] in the pseudomonoclinic C \({\bar{1}}\) setting of phase IIIb. Crystal structure investigations of triclinic CaCO3-III at non-ambient pressure–temperature conditions confirm the reported structure, and the small changes associated with the variation in P and T explain the broad stability of this structure with respect to variations in P and T. PVT equation of state parameters was determined from experimental data points in the range of 2.20–6.50 GPa at 298–405 K providing \(K_{{{\text{T}}_{0} }}\) = 87.5(5.1) GPa, (δK T/δT) P = −0.21(0.23) GPa K−1, α 0 = 0.8(21.4) × 10−5 K−1, and α 1 = 1.0(3.7) × 10−7 K−1 using a second-order Birch–Murnaghan equation of state formalism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adams DM, Williams AD (1980) Vibrational spectroscopy at very high pressures. Part 26. An infrared study of the metastable phases of CaCO3. J Chem Soc Dalton Trans 8:1482–1486

    Article  Google Scholar 

  • Angel RJ (2000) Equations of state. In: Hazen RM, Downs RT (eds) High-temperature and high-pressure crystal chemistry. Rev Miner Geochem 41:35–60

  • Angel RJ, Gonzales-Platas J, Alvaro M (2014) EosFit7c and a Fortran module (library) for equation of state calculations. Zeitschrift für Kristallographie 229:405–419

  • Arapan S, Ahuja R (2010) High-pressure phase transformations in carbonates. Phys Rev B 82:184115

    Article  Google Scholar 

  • Biellmann C, Guyot F, Gillet P, Reynard B (1993) High pressure stability of carbonates: quenching of calcite II, a high pressure polymorph of CaCO3. Eur J Mineral 5:503–510

    Article  Google Scholar 

  • Boehler R, de Hantsetters K (2004) New anvil design in diamond-cells. High Press Res 24–3:391–396

    Article  Google Scholar 

  • Bridgman PW (1925) Linear compressibility of fourteen natural crystals. Am J Sci 5–10:483–498. doi:10.2475/ajs.s5-10.60.483

    Article  Google Scholar 

  • Bridgman PW (1939) The high-pressure behavior of miscellaneous minerals. Am J Sci 237:7–18

    Article  Google Scholar 

  • Catalli K, Williams Q (2005) A high-pressure phase transition of calcite-III. Am Mineral 90:1679–1682

    Article  Google Scholar 

  • Cifrulak SD (1970) High-pressure mid-infrared studies of calcium carbonate. Am Mineral 55:815–824

    Google Scholar 

  • Cohen LH, Klement W (1973) Determination of high-temperature transition on calcite to 5 kbar by differential thermal analysis in hydrostatic apparatus. J Geol 81:724–727

    Article  Google Scholar 

  • Datchi F, Dewaele A, Loubeyre P, Letoullec R, le Godec Y, Canny B (2007) Optical pressure sensors for high-pressure-high-temperature studies in a diamond anvil cell. High Press Res 26:447–463. doi:10.1080/08957950701659593

    Article  Google Scholar 

  • Davis BL (1964) X-ray diffraction data on two high pressure phases of calcium carbonate. Science 145:489–491. doi:10.1029/JB091iB05p04730

    Article  Google Scholar 

  • Dove MT, Powell BM (1989) Neutron-diffraction study of the tricritical orientational order–disorder phase transition in calcite at 1260 K. Phys Chem Miner 16:503–507

    Article  Google Scholar 

  • Fei Y, Ricolleau A, Frank M, Mibe K, Shen G, Prakapenka V (2007) Toward an internally consistent pressure scale. PNAS 104:9182–9186. doi:10.1073/pnas.0609013104

    Article  Google Scholar 

  • Fiquet G, Guyot F, Itié JP (1994) High pressure X-ray diffraction study of carbonates: MgCO3, CaMg(CO3)2, and CaCO3. Am Mineral 79:15–23

    Google Scholar 

  • Fiquet G, Guyot F, Kunz M, Matas J, Andrault D, Hanfland M (2002) Structural refinements of magnesite at very high pressure. Am Mineral 87:1261–1265

    Google Scholar 

  • Fong MY, Nicol M (1971) Raman spectrum of calcium carbonate at high pressures. J Chem Phys 54:579–585

    Article  Google Scholar 

  • Gillet P, Malezieux J, Dhamelincourt M (1988) Micro-Raman multichannel spectroscopy up to 2.5 GPa usind a sapphire-anvil cell: experimental set-up and some applications. Bull Minéral 111:1–15

    Google Scholar 

  • Gillet P, Biellmann C, Reynard B, McMillan P (1993) Raman spectroscopic studies if carbonates part I: high-pressure and high-temperature behaviour of calcite, magnesite, dolomite and ankerite. Phys Chem Miner 20:1–18

    Google Scholar 

  • Hagiya K, Matsui M, Kimura Y, Akahama Y (2005) The crystal data and stability of calcite III at high pressures based on single-crystal X-ray experiments. J Mineral Petrol Sci 100:31–36

    Article  Google Scholar 

  • Hess NJ, Ghose S (1988) Raman spectra of the calcite–CaCO3(II) structural phase transition as a function of pressure (abs.). EOS 69:500

    Google Scholar 

  • Hess NJ, Ghose S, Exarhos GJ (1991) Raman spectroscopy at simultaneous high pressure and temperature: phase relations of CaCO3 and the lattice dynamics of the calcite CaCO3(II) transition. In: Singh AK (ed) Recent trends in high pressure research: proceedings XIIIth AIRAPT international conference on high pressure science and technology, Oxford, New Delhi, pp 236–241

  • Johannsen W, Puhan D (1971) The calcite–aragonite transition reinvestigated. Contrib Mineral Petrol 31:28–38

    Article  Google Scholar 

  • Kabalah-Amitai L, Mayzel B, Kauffmann Y, Fitch AN, Bloch L, Gilbert PUPA, Pokroy B (2013) Vaterite crystals contain two interspersed crystal structures. Science 340:454–457. doi:10.1126/science.1232139

    Article  Google Scholar 

  • Lin C-C (2013) Elasticity of calcite: thermal evolution. Phys Chem Miner 40:157–166. doi:10.1007/s00269-012-0555-3

    Article  Google Scholar 

  • Liu LG, Mernagh TP (1990) Phase transitions and Raman spectra of calcite at high pressures and room temperature. Am Mineral 75:801–806

    Google Scholar 

  • Merlini M, Hanfland M (2013) Single-crystal diffraction at megabar conditions by synchrotron radiation. High Press Res 33:511–522. doi:10.1080/08957959.2013.831088

    Article  Google Scholar 

  • Merlini M, Hanfland M, Crichton WA (2012) CaCO3-III and CaCO3-VI, high-pressure polymorphs of calcite: possible host structures for carbon in the Earth’s mantle. Earth Planet Sci Lett 333–334:265–271. doi:10.1016/j.epsl.2012.04.036

    Article  Google Scholar 

  • Merlini M, Crichton WA, Chantel J, Guignard J, Poli S (2014) Evidence of interspersed co-existing CaCO3-III and CaCO3-IIIb structures in polycrystalline CaCO3 at high pressure. Mineral Mag 78(2):225–233. doi:10.1180/minmag.2014.078.2.01

  • Merrill L, Bassett WA (1975) The high-pressure structure of CaCO3(II), a high-pressure metastable phase of calcium carbonate. Acta Crystallogr B31:343–349

    Article  Google Scholar 

  • Miletich R, Cinato D, Johänntgen S (2009) An internally heated composite gasket for diamond-anvil sells using the pressure-chamber wall as the heating element. High Press Res 29:290–305. doi:10.1080/08957950902747403

    Article  Google Scholar 

  • Mirwald PW (1979) Determination of a high-temperature transition of calcite at 800 C and one bar CO2 pressure. Neues Jahrb Mineral 7:309–315

    Google Scholar 

  • Oganov AR, Glass CW, Ono S (2006) High-pressure phases of CaCO3: crystal structure prediction and experiment. Earth Planet Sci Lett 241:95–103

    Article  Google Scholar 

  • Oganov AR, Ono S, Ma Y, Glass CW, Garcia A (2008) Novel high-pressure structures of MgCO3, CaCO3 and CO2 and their role in the earth’s lower mantle. Earth Planet Sci Lett 273:38–47

    Article  Google Scholar 

  • Ono S, Kikegawa T, Ohishi Y, Tsuchiya J (2005) Post-aragonite phase transformation in CaCO3 at 40 GPa. Am Mineral 90:667–671

    Article  Google Scholar 

  • Ono S, Kikegawa T, Ohishi Y (2007) High-pressure transition of CaCO3. Am Mineral 92:1246–1249. doi:10.2138/am.2007.2649

    Article  Google Scholar 

  • Oxford Diffraction (2006) CrysAlisPro. http://www.chem.agilent.com/en-US/products-services/Software-Informatics/CrysAlisPro/Pages/default.aspx

  • Pippinger T, Miletich R, Burchard M (2011) Multipurpose high-pressure high-temperature diamond-anvil cell with a novel high-precision guiding system and a dual-mode pressurization device. Rev Sci Instrum 82:095108. doi:10.1063/1.3629136

    Article  Google Scholar 

  • Pippinger T, Miletich R, Effenberger H, Hofer G, Lotti P, Merlini M (2014) High-pressure polymorphism and structural transitions of norsethite, BaMg(CO3)2. Phys Chem Miner. doi:10.1007/s00269-014-0687-8

    Google Scholar 

  • Redfern SAT, Angel RJ (1999) High-pressure behaviour and equation of state of calcite, CaCO3. Contrib Mineral Petrol 134:102–106

    Article  Google Scholar 

  • Redfern SAT, Salje E, Navrotsky A (1989) High-temperature enthalpy at the orientational order–disorder transition in calcite: implications for the calcite/aragonite phase equilibrium. Contrib Mineral Petrol 101:479–484. doi:10.1007/BF00372220

    Article  Google Scholar 

  • Schock RN, Katz S (1968) Pressure dependence of the infrared absorption of calcite. Am Mineral 53:1910–1970

    Google Scholar 

  • Sheldrick GM (1997) SHELXL-97, a program for crystal structure refinement. University of Göttingen, Germany

    Google Scholar 

  • Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A 64:112–122. doi:10.1107/S0108767307043930

    Article  Google Scholar 

  • Smyth JR, Ahrens TJ (1997) The crystal structure of calcite III. Geophys Res Lett 24–13:1595–1598

    Article  Google Scholar 

  • Suito K, Namba J, Horikawa T, Taniguchi Y, Sakurai N, Kobayashi M, Onodera A, Shimomura O, Kigegawa T (2001) Phase relations of CaCO3 at high pressure and high temperature. Am Mineral 86:997–1002

    Google Scholar 

  • Tyburczy JA, Ahrens TJ (1986) Dynamic compression and volatile release of carbonates. J Geophys Res 91:4730–4744

    Article  Google Scholar 

  • Van Valkenburg A (1965) Conference Internationale sur-les-Hauts Pressions, Le Creusot, Saone-et-Loire, France, 2–6 August (not available, extracted from Merril and Basset 1975)

  • Wang C (1968) Ultrasonic study of phase transition in calcite to 20 kilobars and 180 C. J Geophys Res 73:3937–3944

    Article  Google Scholar 

  • Wang SX, Zheng HF (2011) Research on Raman spectra of calcite phase transition at high pressure. Spectrosc Spectr Anal 31–8:2117–2119

    Google Scholar 

  • Weir CE, Lippincott ER, van Valkenburg A, Bunting EN (1959) Infrared studies in the 1- to 15-micron region to 30000 atmospheres. J Res Natl Bur Stand Phys Chem 63A–1:52–62

    Google Scholar 

  • Williams Q, Collersin B, Knittle E (1992) Vibrational spectra of magnesite (MgCO3) and calcite-III at high pressures. Am Mineral 77:1158–1165

    Google Scholar 

  • Zhang J, Reeder RJ (1999) Comparative compressibilities of calcite-structure carbonates; deviations from empirical relations. Am Mineral 84:861–870

    Google Scholar 

Download references

Acknowledgments

Dedicated synchrotron beam time at ESRF was provided within the scope of experiment HS-4323. We gratefully acknowledge Diego Gatta for his help processing data and Herta Effenberger for discussions on the crystallography. We thank Andreas Wagner for the careful preparation of oriented sections and Julian Haines for making available Sm2+:SrB4O7 material used in HPHT Raman measurements. We are grateful to the mineral spectroscopy group at Vienna for access to their instruments for the in situ Raman measurements. Marco Merlini acknowledges support from the Deep Carbon Observatory. Finally, the authors highly appreciate the comments and suggestions of the two reviewers, which significantly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Pippinger.

Additional information

T. Yagi is on sabbatical leave at Institut für Mineralogie und Kristallographie, Universität Wien.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pippinger, T., Miletich, R., Merlini, M. et al. Puzzling calcite-III dimorphism: crystallography, high-pressure behavior, and pathway of single-crystal transitions. Phys Chem Minerals 42, 29–43 (2015). https://doi.org/10.1007/s00269-014-0696-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-014-0696-7

Keywords

Navigation