Skip to main content

Advertisement

Log in

High-pressure polymorphism and structural transitions of norsethite, BaMg(CO3)2

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

In situ high-pressure investigations on norsethite, BaMg(CO3)2, have been performed in sequence of diamond-anvil cell experiments by means of single-crystal X-ray and synchrotron diffraction and Raman spectroscopy. Isothermal hydrostatic compression at room temperature yields a high-pressure phase transition at P c ≈ 2.32 ± 0.04 GPa, which is weakly first order in character and reveals significant elastic softening of the high-pressure form of norsethite. X-ray structure determination reveals C2/c symmetry (Z = 4; a = 8.6522(14) Å, b = 4.9774(13) Å, c = 11.1542(9) Å, β = 104.928(8)°, V = 464.20(12) Å3 at 3.00 GPa), and the structure refinement (R 1 = 0.0763) confirms a distorted, but topologically similar crystal structure of the so-called γ-norsethite, with Ba in 12-fold and Mg in octahedral coordination. The CO3 groups were found to get tilted off the ab-plane direction by ~16.5°. Positional shifts, in particular of the Ba atoms and the three crystallographically independent oxygen sites, give a higher flexibility for atomic displacements, from which both the relatively higher compressibility and the remarkable softening originate. The corresponding bulk moduli are K 0 = 66.2 ± 2.3 GPa and dK/dP = 2.0 ± 1.8 for α-norsethite and K 0 = 41.9 ± 0.4 GPa and dK/dP = 6.1 ± 0.3 for γ-norsethite, displaying a pronounced directional anisotropy (α: β −1 a  = 444(53) GPa, β −1 c  = 76(2) GPa; γ: β −1 a  = 5.1(1.3) × 103 GPa, β −1 b  = 193(6) GPa β −1 c  = 53.4(0.4) GPa). High-pressure Raman spectra show a significant splitting of several modes, which were used to identify the transformation in high-pressure high-temperature experiments in the range up to 4 GPa and 542 K. Based on the experimental series of data points determined by XRD and Raman measurements, the phase boundary of the α-to-γ-transition was determined with a Clausius–Clapeyron slope of 9.8(7) × 10−3 GPa K−1. An in situ measurement of the X-ray intensities was taken at 1.5 GPa and 411 K in order to identify the nature of the structural variation on increased temperatures corresponding to the previously reported transformation from α- to β-norsethite at 343 K and 1 bar. The investigations revealed, in contrast to all X-ray diffraction data recorded at 298 K, the disappearance of the superstructure reflections and the observed reflection conditions confirm the anticipated \(R\bar{3}m\) space-group symmetry. The same superstructure reflections, which disappear as temperature increases, were found to gain in intensity due to the positional shift of the Ba atoms in the γ-phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Angel RJ (2000) Equations of state. In: Hazen RM, Downs RT (eds) High-temperature and high-pressure crystal chemistry, vol 41. Rev Mineral Geochem, pp 35–60

  • Angel RJ, Finger LW (2011) Single: a program to control single-crystal diffractometers. J Appl Crystallogr 44:247–251

    Article  Google Scholar 

  • Angel RJ, Gonzalez-Platas J (2013) ABSORB-7 and ABSORB-GUI for single-crystal absorption corrections. J Appl Crystallogr 46:252–254. doi:10.1107/S0021889812048431

    Article  Google Scholar 

  • Angel RJ, Allan DR, Miletich R, Finger LW (1997) The use of quartz as an internal pressure standard in high pressure crystallography. J Appl Crystallogr 30:461–466

    Article  Google Scholar 

  • Angel RJ, Gonzales-Platas J, Alvaro M (2014) EosFit7c and a Fortran module (library) for equation of state calculations. Z Krist 229(5):405–419. doi:10.1515/zkri-2013-1711

  • Antao SM, Hassan I (2007) BaCO3: high-temperature crystal structures and the Pmcn → R3m phase transition at 811 °C. Phys Chem Miner 34:573–580. doi:10.1007/s00269-007-0172-8

    Article  Google Scholar 

  • Antao SM, Hassan I (2009) The orthorhombic structure of CaCO3, SrCO3, PbCO3 and BaCO3: linear structural trends. Can Mineral 47:1245–1255. doi:10.3749/canmin.47.5.1245

    Article  Google Scholar 

  • Arapan S, de Almeida JS, Ahujy R (2007) Formation of sp3 hybridized bonds and stability of CaCO3 at very high pressure. Phys Rev Lett 98:268501. doi:10.1103/PhysRevLett.98.268501

    Article  Google Scholar 

  • Boehler R, de Hantsetters K (2004) New anvil designs in diamond-cells. High Press Res 24(3):391–396. doi:10.1080/08957950412331323924

    Article  Google Scholar 

  • Böttcher ME, Gehlken PL, Reutel C (1996) The vibrational spectra of PbMg(CO3)2. Neues Jahrbuch für Mineralogie Monatshefte 6:241–250

    Google Scholar 

  • Böttcher ME, Gehlken P-L, Skogby H, Reutel C (1997) The vibrational spectra of BaMg(CO3)2 (norsethite). Mineral Mag 61:249–256

    Article  Google Scholar 

  • Boulard E, Gloter A, Corgne A, Antonangeli D, Auzende AL, Perrillat JP, Guyot F, Fiquet G (2011) New host for carbon in the deep Earth. PNAS 108(113):5184–5187. doi:10.1073/pnas.1016934108

    Article  Google Scholar 

  • Buob A, Luth RW, Schmidt MW, Ulmer P (2006) Experiments on CaCO3–MgCO3 solid solutions at high pressure and temperature. Am Mineral 91:435–440. doi:10.2138/am.2006.1910

    Article  Google Scholar 

  • Chervin JC, Canny B, Mancinelli M (2002) Ruby-spheres as pressure gauge for optically transparent high pressure cells. High Press Res 21:305–314

    Article  Google Scholar 

  • Dasgupta R, Hirschmann MM (2010) The deep carbon cycle and melting in Earth’s interior. EPSL 298:1–13. doi:10.1016/j.epsl.2010.06.039

    Article  Google Scholar 

  • Datchi F, Dewaele A, Loubeyre P, Letoullec R, le Godec Y, Canny B (2007) Optical pressure sensors for high-pressure–high-temperature studies in a diamond anvil cell. High Press Res 27(4):447–463. doi:10.1080/08957950701659593

    Article  Google Scholar 

  • Effenberger H, Zemann J (1985) Single crystal X-ray investigation of norsethite, BaMg(CO3)2: one more mineral with an aplanar carbonate group. Z Krist 171:275–280

    Article  Google Scholar 

  • Effenberger H, Pippinger T, Libowitzky E, Lengauer C, Miletich R (2014) Synthetic norsethite, BaMg(CO3)2: revised crystal structure, thermal behaviour and displacive phase transition. Min Mag, accepted

  • Fiquet G, Guyot F, Kunz M, Matas J, Andrault D, Hanfland M (2002) Structural refinements of magnesite at very high pressure. Am Mineral 87:1261–1265

    Google Scholar 

  • Hazen RM, Hemley RJ, Mangum AJ (2012) Carbon in Earth’s interior: storage, cycling, and life. EOS Trans AGU 93(2):17. doi:10.1029/2012EO020001

    Article  Google Scholar 

  • Hejny C, Miletich R, Jasser A, Schouwink P, Crichton W, Kahlenberg V (2012) Second order P c2-P31c structural transition and structural crystallography of the cyclosilicate benitoite, BaTiSi3O9, at high pressure. Am Mineral 97:1747–1763

    Google Scholar 

  • Holl CM, Smyth JR, Laustsen HMS, Jacobsen SD, Downs RT (2000) Compression of witherite to 8 GPa and the crystal structure of BaCO3 II. Phys Chem Miner 27:467–473

    Article  Google Scholar 

  • Isshiki M, Irifune T, Hirose K, Ono S, Ohishi Y, Watanuki T, Nishibori E, Takata M, Sakata M (2004) Stability of magnesite and its high-pressure form in the lowermost mantle. Nature 42:60–63. doi:10.1038/nature02181

    Article  Google Scholar 

  • Lavina B, Dera P, Downs RT, Yang W, Sinogeikin S, Meng Y, Shen G, Schiferl D (2010) Structure of siderite FeCO3 to 56 GPa and hysteresis of its spin-pairing transition. Phys Rev B 82:064110. doi:10.1103/PhysRevB.82.064110

    Article  Google Scholar 

  • Lin CC, Liu LG (1997a) High pressure phase transformations in aragonite-type carbonates. Phys Chem Miner 24:149–157

    Article  Google Scholar 

  • Lin CC, Liu LG (1997b) Post-aragonite phase transitions in strontianite and cerussite—a high-pressure Raman spectroscopic study. J Phys Chem Solids 58(6):977–987

    Article  Google Scholar 

  • Lippmann F (1968) Die Kristallstruktur des Norsethit, BaMg(CO3)2. Mit einem Strukturvorschlag für PbMg(CO3)2. Tschermaks Mineralogische und Petrographische Mitteilungen 12:299–318

    Article  Google Scholar 

  • Mao HK, Xu J, Bell PM (1986) Calibration of the ruby pressure scale to 800 kbars under quasi hydrostatic conditions. J Geophys Res 9:4673–4676

    Article  Google Scholar 

  • Mao Z, Armentrout M, Rainey E, Manning CE, Dera P, Prakapenka VB, Kavner A (2011) Dolomite III: a new candidate lower mantle carbonate. Geophys Res Lett 38:L22303. doi:10.1029/2011GL049519

    Google Scholar 

  • Merlini M, Hanfland M (2013) Single-crystal diffraction at megabar conditions by synchrotron radiation. High Press Res 33:511–522. doi:10.1080/08957959.2013.831088

    Article  Google Scholar 

  • Merlini M, Hanfland M, Crichton WA (2012a) CaCO3-III and CaCO3-VI, high-pressure polymorphs of calcite: possible host structures for carbon in the Earth’s mantle. EPSL 333:265–271. doi:10.1016/j.epsl.2012.04.036

    Article  Google Scholar 

  • Merlini M, Crichton WA, Hanfland M, Gemmi M, Müller H, Kupenko I, Dubrovionsky L (2012b) Structures of dolomite at ultrahigh pressure and their influence on the deep carbon cycle. PNAS 109(34):13509–13514. doi:10.1073/pnas.1201336109

    Article  Google Scholar 

  • Miletich R, Allan DR, Kuhs WF (2000) High-pressure single-crystal techniques. In Hazen RM (ed) High-temperature and high-pressure crystal chemistry. Rev Mineral Geochem vol 41, pp 445–520

  • Miletich R, Cinato D, Johänntgen S (2009) An internally heated composite gasket for diamond-anvil cells using the pressure-chamber wall as the heating element. High Press Res 29(2):290–305. doi:10.1080/08957950902747403

    Article  Google Scholar 

  • Oganov AR, Ono S, Ma Y, Glass CW, Garcia A (2008) Novel high-pressure structures of MgCO3, CaCO3 and CO2 and their role in Earth’s lower mantle. EPSL 273:38–47. doi:10.1016/j.epsl.2008.06.005

    Article  Google Scholar 

  • Ono S, Kikegawa T, Oishi Y, Tsuchiya J (2005) Post-aragonite phase transformation in CaCO3 at 40 GPa. Am Mineral 90(4):667–671. doi:10.2138/am.2005.1610

    Article  Google Scholar 

  • Ono S, Kikegawa T, Ohishi Y (2007) High-pressure transition of CaCO3. Am Mineral 92(7):1246–1249. doi:10.2138/am.2007.2649

    Article  Google Scholar 

  • Oxford Diffraction (2006) CrysAlisPro. http://www.chem.agilent.com/en-US/products-services/Software-Informatics/CrysAlisPro/Pages/default.aspx

  • Petricek V, Dusek M, Palatinus L (2006) Jana 2006—the crystallographic computing system. Institute of Physics, Praha

    Google Scholar 

  • Pippinger T, Miletich R, Burchard M (2011) Multipurpose high-pressure high-temperature diamond-anvil cell with a novel high-precision guiding system and a dual-mode pressurization device. Rev Sci Instrum 82:095108. doi:10.1063/1.3629136

    Article  Google Scholar 

  • Renishaw Diagnostics (2010) Klarite sCAL Silicon Calibration Standard. http://resources.renishaw.com/details/sCAL+Datasheet%28113947%29%2827688%29

  • Santillan J, Williams Q, Knittle E (2003) Dolomite-II: a high-pressure polymorph of CaMg(CO3)2. Geophys Res Lett 30(2):1054. doi:10.1029/2002GL016018

    Article  Google Scholar 

  • Scheetz BE, White WB (1977) Vibrational spectra of the alkaline earth double carbonates. Am Mineral 62:36–50

    Google Scholar 

  • Secco L, Lavina B (1999) Crystal chemistry of two natural magmatic norsethites, BaMg(CO3)2, from an Mg-carbonatite of the alkaline carbonatitic complex of Tapira (SE Brazil). Neues Jahrbuch für Mineralogie Monatshefte 2:87–96

  • Sheldrick GM (1997) SHELXL-97, a program for crystal structure refinement. University of Göttingen, Germany

  • Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A 64:112–122. doi:10.1107/S0108767307043930

    Article  Google Scholar 

  • Townsend JP, Chang YY, Lou X, Merino M, Kirklin SJ, Doak JW, Issa A, Wolverton C, Tkachev SN, Dera P, Jacobsen SD (2013) Stability and equation of state of post-aragonite BaCO3. Phys Chem Miner 40(5):447–453. doi:10.1007/s00269-013-0582-8

    Article  Google Scholar 

  • Tröster A, Schranz W, Miletich R (2002) How to couple Landau theory to an equation of state. Phys Rev Lett 88(5):055503. doi:10.1103/PhysRevLett.88.055503

    Article  Google Scholar 

  • Ullrich A, Schranz W, Miletich R (2009) The nonlinear anomalous lattice elasticity associated with the high-pressure phase transition in spodumene: a high-precision static compression study. Phys Chem Miner 36:545–555. doi:10.1007/s00269-009-0300-8

    Article  Google Scholar 

  • Winkler B, Zemann J, Milman V (2000) Aplanarity of CO3 groups: a theoretical investigation. Acta Crystallogr B 56:648–653

    Article  Google Scholar 

  • Zhang J, Reeder RJ (1999) Comparative compressibilities of calcite-structure carbonates: deviations from empirical relations. Am Mineral 84:861–870

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Wilson Crichton and Michael Hanfland for their support with the synchrotron experiments at ID09, ESRF. Furthermore, we thank Julian Haines for making available Sm2+:SrB4O7 sensor material for our experiments. Marco Merlini acknowledges support from the Deep Carbon Observatory. Finally, the authors highly appreciate the valuable suggestions and great effort of the two reviewers, which significantly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Pippinger.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pippinger, T., Miletich, R., Effenberger, H. et al. High-pressure polymorphism and structural transitions of norsethite, BaMg(CO3)2 . Phys Chem Minerals 41, 737–755 (2014). https://doi.org/10.1007/s00269-014-0687-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-014-0687-8

Keywords

Navigation