Skip to main content

Advertisement

Log in

High immunosuppressive burden in cancer patients: a major hurdle for cancer immunotherapy

  • Focussed Research Review
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

A bottleneck for immunotherapy of cancer is the immunosuppressive microenvironment in which the tumor cells are located. Regardless of the fact that large numbers of tumor-specific T cells can be generated in patients by active immunization or adoptive transfer, these T cells do not readily translate to tumor cell killing in vivo. The immune regulatory mechanism that prevents autoimmunity may be harnessed by tumor cells for the evasion of immune destruction. Regulatory T cells, myeloid-derived suppressor cells, inhibitory cytokines and immune checkpoint receptors are the major components of the immune system acting in concert with causing the subversion of anti-tumor immunity in the tumor microenvironment. This redundant immunosuppressive network may pose an impediment to efficacious immunotherapy, thus facilitating tumor progression. Cancer progression clearly documents the failure of immune control over relentless growth of tumor cells. Detailed knowledge of each of these factors responsible for creating an immunosuppressive shield to protect tumor cells from immune destruction is essential for the development of novel immune-based therapeutic interventions of cancer. Multipronged targeted depletion of these suppressor cells may restore production of granzyme B by CD8+ T cells and increase the number of IFN-γ-producing CD4+ T cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AFP:

Alpha-fetoprotein

Arg-1:

Arginase-1

CCR4:

Chemokine receptor type-4

COX2:

Cyclooxygenase-2

CRC:

Colorectal cancer

GARP:

Glycoprotein A repetition predominant

GPC-3:

Glypican-3

HCC:

Hepatocellular carcinoma

MAGE-A:

Melanoma antigen-A

mTOR:

Mammalian target of rapamycin

NO:

Nitric oxide

NY-ESO-1:

New York esophageal squamous cell cancer-1

PDE-5:

Phosphodiesterase-5

PKC:

Protein kinase C

ROS:

Reactive oxygen species

TAM:

Tumor-associated macrophages

Th1:

T helper 1

Tregs:

Regulatory T cells

References

  1. Schrader J (2013) The role of MDSCs in hepatocellular carcinoma—in vivo veritas? J Hepatol 59:921–923

    Article  PubMed  Google Scholar 

  2. Capece D, Fischietti M, Verzella D, Gaggiano A, Cicciarelli G, Tessitore A et al (2013) The inflammatory microenvironment in hepatocellular carcinoma: a pivotal role for tumor-associated macrophages. Biomed Res Int 2013:187204. doi:10.1155/2013/187204

    Article  PubMed  Google Scholar 

  3. Cabrera R, Szabo G (2013) Another armed CD4(+) T cell ready to battle hepatocellular carcinoma. Hepatology 58:1–3

    Article  CAS  PubMed  Google Scholar 

  4. Fu J, Zhang Z, Zhou L, Qi Z, Xing S, Lv J et al (2013) Impairment of CD4+ cytotoxic T cells predicts poor survival and high recurrence rates in patients with hepatocellular carcinoma. Hepatology 58:139–149

    Article  CAS  PubMed  Google Scholar 

  5. Pastille E, Bardini K, Fleissner D, Adamczyk A, Frede A, Wadwa M et al (2014) Transient ablation of regulatory T cells improves antitumor immunity in colitis-associated colon cancer. Cancer Res 74:4258–4269

    Article  CAS  PubMed  Google Scholar 

  6. Makarova-Rusher OV, Medina-Echeverz J, Duffy AG, Greten TF (2015) The yin and yang of evasion and immune activation in HCC. J Hepatol 62:1420–1429

    Article  CAS  PubMed  Google Scholar 

  7. Huang Y, Wang F, Wang Y, Zhu Z, Gao Y, Ma Z et al (2014) Intrahepatic interleukin-17+ T cells and FoxP3+ regulatory T cells cooperate to promote development and affect the prognosis of hepatocellular carcinoma. J Gastroenterol Hepatol 29:851–859

    Article  CAS  PubMed  Google Scholar 

  8. Zhang X, Kelaria S, Kerstetter J, Wang J (2015) The functional and prognostic implications of regulatory T cells in colorectal carcinoma. J Gastrointest Oncol 6:307–313

    PubMed  PubMed Central  Google Scholar 

  9. Kondo Y, Shimosegawa T (2015) Significant roles of regulatory T cells and myeloid derived suppressor cells in hepatitis B virus persistent infection and hepatitis B virus-related HCCs. Int J Mol Sci 16:3307–3322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sharma S, Khosla R, David P, Rastogi A, Vyas A, Singh D et al (2015) CD4+CD25+CD127 (low) regulatory T cells play predominant anti-tumor suppressive role in hepatitis B virus-associated hepatocellular carcinoma. Front Immunol 6:49. doi:10.3389/fimmu.2015.00049

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bailur JK, Gueckel B, Derhovanessian E, Pawelec G (2015) Presence of circulating Her2-reactive CD8+ T-cells is associated with lower frequencies of myeloid-derived suppressor cells and regulatory T cells, and better survival in older breast cancer patients. Breast Cancer Res 17:34. doi:10.1186/s13058-015-0541-z

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhang D, Chen Z, Wang DC, Wang X (2015) Regulatory T cells and potential inmmunotherapeutic targets in lung cancer. Cancer Metastasis Rev 34:277–290

    Article  CAS  PubMed  Google Scholar 

  13. Yan F, Du R, Wei F, Zhao H, Yu J, Wang C et al (2015) Expression of TNFR2 by regulatory T cells in peripheral blood is correlated with clinical pathology of lung cancer patients. Cancer Immunol Immunother 64:1475–1485

    Article  CAS  PubMed  Google Scholar 

  14. Kurose K, Ohue Y, Sato E, Yamauchi A, Eikawa S, Isobe M et al (2015) Increase in activated Treg in TIL in lung cancer and in vitro depletion of Treg by ADCC using an antihuman CCR4 mAb (KM2760). J Thorac Oncol 10:74–83

    Article  CAS  PubMed  Google Scholar 

  15. Talmadge JE, Gabrilovich DI (2013) History of myeloid-derived suppressor cells. Nat Rev Cancer 13:739–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stromnes IM, Greenberg PD, Hingorani SR (2014) Molecular pathways: myeloid complicity in cancer. Clin Cancer Res 20:5157–5170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Stromnes IM, Brockenbrough JS, Izeradjene K, Carlson MA, Cuevas C, Simmons RM et al (2014) Targeted depletion of an MDSC subset unmasks pancreatic ductal adenocarcinoma to adaptive immunity. Gut 63:1769–1781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mao Y, Poschke I, Wennerberg E, de Pico CY, Egyhazi BS, Schultz I et al (2013) Melanoma-educated CD14+ cells acquire a myeloid-derived suppressor cell phenotype through COX-2-dependent mechanisms. Cancer Res 73:3877–3887

    Article  CAS  PubMed  Google Scholar 

  19. Califano JA, Khan Z, Noonan KA, Rudraraju L, Zhang Z, Wang H et al (2015) Tadalafil augments tumor specific immunity in patients with head and neck squamous cell carcinoma. Clin Cancer Res 21:30–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Metz R, Rust S, Duhadaway JB, Mautino MR, Munn DH, Vahanian NN et al (2012) IDO inhibits a tryptophan sufficiency signal that stimulates mTOR: a novel IDO effector pathway targeted by D-1-methyl-tryptophan. Oncoimmunology 1:1460–1468

    Article  PubMed  PubMed Central  Google Scholar 

  21. Weide B, Martens A, Zelba H, Stutz C, Derhovanessian E, Di Giacomo AM et al (2014) Myeloid-derived suppressor cells predict survival of patients with advanced melanoma: comparison with regulatory T cells and NY-ESO-1- or melan-A-specific T cells. Clin Cancer Res 20:1601–1609

    Article  CAS  PubMed  Google Scholar 

  22. Arihara F, Mizukoshi E, Kitahara M, Takata Y, Arai K, Yamashita T et al (2013) Increase in CD14+ HLA-DR -/low myeloid-derived suppressor cells in hepatocellular carcinoma patients and its impact on prognosis. Cancer Immunol Immunother 62:1421–1430

    Article  CAS  PubMed  Google Scholar 

  23. Napolitano M, D’Alterio C, Cardone E, Trotta AM, Pecori B, Rega D et al (2015) Peripheral myeloid-derived suppressor and T regulatory PD-1 positive cells predict response to neoadjuvant short-course radiotherapy in rectal cancer patients. Oncotarget 6:8261–8270

    Article  PubMed  PubMed Central  Google Scholar 

  24. Idorn M, Kollgaard T, Kongsted P, Sengelov L, Thor SP (2014) Correlation between frequencies of blood monocytic myeloid-derived suppressor cells, regulatory T cells and negative prognostic markers in patients with castration-resistant metastatic prostate cancer. Cancer Immunol Immunother 63:1177–1187

    Article  CAS  PubMed  Google Scholar 

  25. Kalathil S, Lugade AA, Miller A, Iyer R, Thanavala Y (2013) Higher frequencies of GARP(+)CTLA-4(+)Foxp3(+) T regulatory cells and myeloid-derived suppressor cells in hepatocellular carcinoma patients are associated with impaired T-cell functionality. Cancer Res 73:2435–2444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Medina-Echeverz J, Eggert T, Han M, Greten TF (2015) Hepatic myeloid-derived suppressor cells in cancer. Cancer Immunol Immunother 64:931–940

    Article  CAS  PubMed  Google Scholar 

  27. Diaz-Montero CM, Finke J, Montero AJ (2014) Myeloid-derived suppressor cells in cancer: therapeutic, predictive, and prognostic implications. Semin Oncol 41:174–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhu Y, Hawkins WG, DeNardo DG (2015) Regramming myeloid responses to improve cancer immunotherapy. Oncoimmunology 4:e974399. doi:10.4161/2162402X.2014.974399

    Article  PubMed  PubMed Central  Google Scholar 

  29. Taube JM, Klein A, Brahmer JR, Xu H, Pan X, Kim JH et al (2014) Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res 20:5064–5074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Topalian SL, Sznol M, McDermott DF, Kluger HM, Carvajal RD, Sharfman WH et al (2014) Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol 32:1020–1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hamid O, Robert C, Daud A, Hodi FS, Hwu WJ, Kefford R et al (2013) Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med 369:134–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366:2443–2454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Andersen MH (2014) The targeting of immunosuppressive mechanisms in hematological malignancies. Leukemia 28:1784–1792

    Article  CAS  PubMed  Google Scholar 

  34. Haile ST, Dalal SP, Clements V, Tamada K, Ostrand-Rosenberg S (2013) Soluble CD80 restores T cell activation and overcomes tumor cell programmed death ligand 1-mediated immune suppression. J Immunol 191:2829–2836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ostrand-Rosenberg S, Horn LA, Haile ST (2014) The programmed death-1 immune-suppressive pathway: barrier to antitumor immunity. J Immunol 193:3835–3841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Woller N, Gurlevik E, Fleischmann-Mundt B, Schumacher A, Knocke S, Kloos AM et al (2015) Viral infection of tumors overcomes resistance to PD-1-immunotherapy by broadening neoantigenome-directed T-cell responses. Mol Ther 23:1630–1640

    Article  CAS  PubMed  Google Scholar 

  37. Schmidt N, Flecken T, Thimme R (2014) Tumor-associated antigen specific CD8 T cells in hepatocellular carcinoma—a promising target for immunotherapy. Oncoimmunology 3:e954919. doi:10.4161/21624011.2014.954919

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hato T, Goyal L, Greten TF, Duda DG, Zhu AX (2014) Immune checkpoint blockade in hepatocellular carcinoma: current progress and future directions. Hepatology 60:1776–1782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lugade AA, Kalathil S, Miller A, Iyer R, Thanavala Y (2013) High immunosuppressive burden in advanced hepatocellular carcinoma patients: Can effector functions be restored? Oncoimmunology 2:e24679. doi:10.4161/onci.24679

    Article  PubMed  PubMed Central  Google Scholar 

  40. Yano H, Thakur A, Tomaszewski EN, Choi M, Deol A, Lum LG (2014) Ipilimumab augments antitumor activity of bispecific antibody-armed T cells. J Transl Med 12:191. doi:10.1186/1479-5876-12-191

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hodi FS, Lawrence D, Lezcano C, Wu X, Zhou J, Sasada T et al (2014) Bevacizumab plus ipilimumab in patients with metastatic melanoma. Cancer Immunol Res 2:632–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD et al (2015) Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma. N Engl J Med 373:23–34

    Article  PubMed  Google Scholar 

  43. Korangy F, Ormandy LA, Bleck JS, Klempnauer J, Wilkens L, Manns MP et al (2004) Spontaneous tumor-specific humoral and cellular immune responses to NY-ESO-1 in hepatocellular carcinoma. Clin Cancer Res 10:4332–4341

    Article  CAS  PubMed  Google Scholar 

  44. Flecken T, Schmidt N, Hild S, Gostick E, Drognitz O, Zeiser R et al (2014) Immunodominance and functional alterations of tumor-associated antigen-specific CD8+ T-cell responses in hepatocellular carcinoma. Hepatology 59:1415–1426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhao HQ, Li WM, Lu ZQ, Yao YM (2014) Roles of Tregs in development of hepatocellular carcinoma: a meta-analysis. World J Gastroenterol 20:7971–7978

    Article  PubMed  PubMed Central  Google Scholar 

  46. Santegoets SJ, Dijkgraaf EM, Battaglia A, Beckhove P, Britten CM, Gallimore A et al (2015) Monitoring regulatory T cells in clinical samples: consensus on an essential marker set and gating strategy for regulatory T cell analysis by flow cytometry. Cancer Immunol Immunother 64:1271–1286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lee IC, Huang YH, Chau GY, Huo TI, Su CW, Wu JC et al (2013) Serum interferon gamma level predicts recurrence in hepatocellular carcinoma patients after curative treatments. Int J Cancer 133:2895–2902

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research in the Thanavala Lab was supported in part through discretionary funds available to Dr. Thanavala. We gratefully acknowledge Dr. Paul Wallace and Earl Timm for their help in designing flow cytometry experiments. The patient samples were obtained through the Roswell Park Cancer Institute Data Bank and Biorepository which is a Cancer Center Support Grant (CCSG) Shared Resource supported by National Institute of Health P30 CA016056-27.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasmin Thanavala.

Ethics declarations

Conflict of interest

None of the authors have any conflict of interest.

Additional information

This paper is a Focussed Research Review based on a presentation given at the Fourth International Conference on Cancer Immunotherapy and Immunomonitoring (CITIM 2015), held in Ljubljana, Slovenia, 27th–30th April 2015. It is part of a series of Focussed Research Reviews and meeting report in Cancer Immunology, Immunotherapy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalathil, S.G., Thanavala, Y. High immunosuppressive burden in cancer patients: a major hurdle for cancer immunotherapy. Cancer Immunol Immunother 65, 813–819 (2016). https://doi.org/10.1007/s00262-016-1810-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-016-1810-0

Keywords

Navigation